This invention relates generally to the welding of superalloys and, particularly, to nickel-based alloys having a high gamma prime content.
Nickel-based superalloys high in gamma prime are highly susceptible to cracking during welding or post-weld heat treatment. This is particularly true when the welds are made using weld fillers with high gamma prime content, and welded at ambient temperature.
One method of addressing this problem is to weld the superalloy at very high temperatures as disclosed, for example, in U.S. Pat. No. 5,897,801. Another method utilizes ductile fillers, either for the entire weld or as part of an interlayer. However, these approaches can result in significant degradation of base metal properties.
In accordance with an exemplary embodiment of this invention, nickel-based or other superalloy components are welded at ambient temperature, and the typical cracking that occurs is accepted. Subsequently, however, the weld surfaces are overlaid with a braze paste or braze paste mixture and the parts are then heat treated. The braze paste may or may not include superalloy powder as a partial constituent. The heat treatment includes a stress relief cycle followed by a braze cycle that repairs any cracks formed during welding or during the stress relief cycle.
Accordingly, in its broader aspects, the present invention relates to a method of welding superalloy components comprising: (a) forming a weld prep groove at facing surfaces of the components; (b) welding the components using a filler material; (c) covering the weld filler material and adjacent surfaces of the components with a braze paste; and (d) heat treating the components.
In another aspect, the invention relates to a method of welding superalloy components comprising: (a) forming a weld prep groove at an interface of the components; (b) welding the components using a high strength filler material at ambient temperature; (c) covering the weld filler material and adjacent surfaces of the components with a braze paste; and (d) heat treating the components in a stress relief cycle followed by a braze cycle.
In still another aspect, the invention relates to a method of repairing a crack in a superalloy component comprising: (a) forming a weld prep groove along the crack; (b) weld-filling the weld prep groove with filler material; (c) covering the weld filler material and adjacent surfaces with a braze paste; and (d) heat treating the component in a stress relief cycle followed by a braze cycle.
The invention will now be described in connection with the drawings identified below.
With reference now to
Subsequently, the surfaces in the fusion zone, i.e., the exposed weld filler surface and adjacent surfaces of the component parts, are covered with a braze paste or braze paste mixture 18. The paste 18 can be either a pure braze alloy, e.g., AMS 4782, or a mixture of e.g., AMS 4782 and a powder of the superalloy Inconel 738.
The welded components are then vacuum-heat-treated in a process that includes both a stress relief cycle and a braze cycle. In this regard,
An important aspect of the process is that the weld is permitted to crack initially during or just after welding, but any such crack is “healed” or repaired during the braze cycle of the post-weld heat treatment. The end result is a fused region of the nickel superalloy components that is free of cracks, thus solving the above mentioned problem of welding nickel-based superalloys that are high in gamma prime content.
As mentioned above, a similar process may be utilized to repair a defect such as a crack in a nickel-based or other superalloy component. In this case, the crack is excavated by routing or machining to form a weld prep groove similar to groove 14 (referring to
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.