The present disclosure relates generally to wellbore ranging and proximity detection, specifically the use of a radiation source for wellbore ranging and proximity detection.
Knowledge of wellbore placement and surveying is useful for the development of subsurface oil & gas deposits, mining, and geothermal energy development. Accurate knowledge of the position of a wellbore at a measured depth, including inclination and azimuth, may be used to attain the geometric target location of, for example, an oil bearing formation of interest. Additionally, accurate relative placement of a wellbore to a geological zone or formation, or relative to one or more adjacent wellbores, may be useful or necessary for the production of hydrocarbons or geothermal energy, or to ensure that adjacent wellbores do not physically intersect each other.
Traditional wellbore survey techniques utilize sensors including north-finding or rate gyroscopes, magnetometers, and accelerometers to measure azimuth and inclination, with depth resulting from drillpipe depth or wireline depth measurements. With traditional wellbore survey techniques, the resultant positional uncertainty between two or more adjacent wellbores may be too large to determine the distance or direction (relative orientation) between the adjacent wellbores within a desired accuracy or statistical confidence interval. In some instances, magnetic ranging techniques may consist of estimating the distance, orientation, or both the distance and orientation of a wellbore or drilling equipment in that wellbore relative to other wellbores by measuring the magnetic field that is produced either passively from the adjacent wellbore's casing or drillpipe, or by measuring an actively generated magnetic field. In some instances, the use of magnetic ranging techniques may result in decreased relative positional uncertainty between adjacent wellbores compared to traditional wellbore survey techniques.
In splitter wells, two wellbores may share the same conductor pipe. Traditionally, in splitter wells, two smaller casings are installed within the same larger conductor. The smaller casings may be in proximity to each other and in certain cases, touching. It is desirable that an exit from one casing, such as, for instance, by drilling out of the shoe or setting a whipstock, does not result in a collision with the other casing. Because both wellbores are cased, the use of magnetic ranging techniques may result in inaccurate results.
When blind drilling, conductor pipes are driven, for instance, from offshore platforms; the position of the bores relative to each other may not be known or not known to a desired accuracy. It is desirable that the bores not intercept each other. Like in splitter wells, the use of magnetic ranging techniques may result in inaccurate results. Thus, recovery of conductors may prove difficult because the blind-drilled bores may be viewed as undrillable due to anti-collision rules.
The present disclosure provides for a ranging and proximity detection system that includes a radiation source, the radiation source positioned within a first wellbore and a radiation detector positioned within a second wellbore.
A method includes positioning a radiation source within a first wellbore, positioning a radiation detector within a second wellbore, and detecting radiation emitted from the radiation source with the radiation detector.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship.
As shown in
As further shown in
Radiation source 14 may be a natural or artificial source of one or more forms of radiation including ionizing radiation such as gamma radiation or neutron radiation. In some embodiments, radiation source 14 may include a natural radiation source such as a radionuclide sample such that radioactive decay of the radionuclide sample causes emission of the desired radiation. In some embodiments, radiation source 14 may be selected such that the radiation emitted by radiation source 14 is in a different spectrum compared to background radiation that may be present in first wellbore 10, second wellbore 20, or surrounding formation 12. In some embodiments, for example and without limitation, radiation source 14 may include a natural gamma radiation source such as, for example and without limitation, a sample of Cesium-137. In other embodiments, radiation source 14 may include a neutron source. In some embodiments, the neutron source may include, for example and without limitation, a natural neutron source including a sample of a nuclide such as Amercium-241 Beryllium or Californium-252. In some embodiments, the neutron source may include an accelerator-type neutron source such as, for example and without limitation, a pulsed neutron generator. In some such embodiments, radiation source 14 may include a neutron-porosity tool that includes such a pulsed neutron generator. The accelerator-type neutron source may, for example and without limitation, pulse neutron radiation in accordance with a predefined schedule or as commanded from the surface or a downhole controller. In some embodiments, radiation source assembly 21 may contain both a neutron source and a gamma radiation source. In some embodiments, radiation source assembly 21 may include more than one natural gamma radiation source, more than one neutron source, or both.
Radiation detector 17 may include one or more sensors for detecting the radiation emitted by radiation source 14 including, for example and without limitation, one or more gamma radiation detectors, neutron detectors, or both. In some embodiments, radiation detector 17 may detect the overall amount of radiation incident on radiation detector 17 over an interval of time. In some embodiments, radiation detector 17 may be configured to measure the amount of incident radiation detected in different spectral bands over an interval of time. In some embodiments, radiation detector 17 may include a gamma radiation detector such as, for example and without limitation, a gas-discharge counter such as a Geiger-Muller tube or a scintillation detector such as a photomultiplier tube, photodiode, or silicon photomultiplier and sodium-iodide (NaI), bismuth germinate (BGO), Lanthanum Bromide (LaBr), or Cerium Bromide (CeBr) scintillator. In some embodiments, gamma detectors may be used to detect gamma radiation from a gamma radiation source in radiation source 14 and/or from radiation from neutron-activated formation or wellbore fluids resulting from neutron radiation from a neutron source of radiation source 14.
In some embodiments, radiation detector 17 may include a neutron detector such as, for example and without limitation, a helium-3 detector. In some embodiments, neutron detectors may be used to detect neutron radiation from a neutron radiation source in radiation source 14 and/or from neutron-activated borehole or formation neutrons.
In some embodiments, as shown in
In some embodiments, radiation source 14 may be radially shielded in first wellbore 10 such that radiation emitted by radiation source 14 is emitted in a designated radial direction from first wellbore 10. In some embodiments, radiation source 14 may be partially shielded within radiation source assembly 21 or by the configuration of radiation source assembly 21 itself. Shielding may, for example and without limitation, reduce the amount of radiation from radiation source 14 that exits first wellbore 10 in radial directions other than the designated radial direction. For example, in some embodiments, radiation source assembly 21 may be configured such that the density and/or width of components of radiation source assembly 21 and/or additional shielding included in radiation source assembly 21 about radiation source 14 is not uniform about the radius of radiation source assembly 21 or the radius of first wellbore 10 such that radiation source 14 is selectively partially shielded from emitting gamma radiation or neutron radiation. Where radiation source 14 includes a neutron source, the radial shielding may be accomplished by increasing or decreasing the amount of atomically light nuclei about the radius of radiation source 14, radiation source assembly 21, or the radius of first wellbore 10.
For example, as depicted in
In some embodiments, such as shown in
In some embodiments, as depicted in
In some embodiments, such as depicted in
In some embodiments, radiation detector 17 may be made azimuthally sensitive by partial shielding about radiation detector 17 within radiation detector assembly 16 or by the configuration of radiation detector assembly 16 itself. Shielding may, for example and without limitation, reduce the amount of radiation from radiation source 14 that reaches radiation detector 17 in selected radial directions. For example, in some embodiments, radiation detector assembly 16 may be configured such that the density and/or width of components of radiation detector assembly 16 and/or additional shielding included in radiation detector assembly 16 about radiation detector 17 is not uniform about the radius of radiation detector assembly 16 or the radius of second wellbore 20 such that radiation detector 17 is selectively partially shielded from gamma radiation or neutron radiation. Where radiation detector 17 includes a neutron detector, the radial shielding may be accomplished by increasing or decreasing the amount of atomically light nuclei about the radius of radiation detector 17 assembly 16 or the radius of second wellbore 20.
For example, as shown in
In other embodiments, as shown in
In other embodiments, as depicted in
For the radiation emitted from radiation source 14 in first wellbore 10 to be detected by radiation detector 17 in second wellbore 20, radiation source 14 and radiation detector 17 may be depth aligned. Depth alignment may be accomplished by deploying radiation source 14 at a depth that minimizes the radial distance between radiation source 14 and radiation detector 17. In two adjacent vertical wellbores, the depth alignment may be accomplished by lowering radiation source 14 and radiation detector 17 so that radiation source 14 and radiation detector 17 are at approximately the same vertical depth. For nominally vertical wellbores, depths for alignment may be generally known based on prior wellbore surveys and may be predetermined before deploying radiation source 14 and radiation detector 17. In other embodiments, such as in deviated or horizontal wellbores, the depth of radiation source 14 or radiation detector 17 may be varied until the magnitude of radiation detected by radiation detector 17 is sufficiently larger than background radiation or has sufficient performance statistics to begin the remainder of the nuclear ranging process to determine the direction between the wellbores. In some embodiments, if sufficient radiation magnitude is not detected by radiation detector 17 during the depth alignment process, varying of radiation source 14 or radiation detector 17 may be used to determine the minimum distance between the two wellbores at either the depth of radiation source 14 or radiation detector 17.
In some embodiments, once radiation source 14 and radiation detector 17 are depth aligned, one or more measurements may be taken by radiation detector 17. If radiation detector 17 is azimuthally sensitive, one or more radiation detector measurements may be obtained at different radial orientations by rotating the detector about its roll axis. If radiation source 14 is radially shielded, one or more radiation detector measurements may be obtained at different radial orientations by rotating radiation source 14 about its roll axis. At each of the one or more radial orientations, the radial orientation of the azimuthally-sensitive radiation detector 17 and/or the radially-shielded radiation source 14 is determined by measuring a gyroscopic azimuth, gyro toolface, high-side toolface using accelerometers, and/or a magnetic azimuth or toolface using sensors associated with radiation detector 17 and/or radiation source 14.
In some circumstances the magnetic azimuth and magnetic toolface may be corrupted due to the close proximity of the two wellbores. A response function or mapping may be created between the one or more radiation detector 17 measurements and the corresponding roll-axis measurements. The response function may be used as an indicator of the direction to a target. For example, the roll-axis orientation corresponding to the highest detected radiation magnitude may be an indicator of the heading from one wellbore to the other wellbore. In some embodiments, the response function may be interpolated or used in conjunction with a simulated or mathematical response model to obtain better resolution or accuracy on the relative heading. In other embodiments, the response function may be used with a simulated or mathematical response model to also estimate the distance to the target. In some embodiments, radiation detector 17 and roll axis measurements may be taken while either the radially-shielded radiation source and/or the azimuthally sensitive radiation detector are continuously rotated and then dynamically binned into sectored azimuthal measurements. In other embodiments, the measurements may be obtained at discrete roll stationary axis orientations.
In some embodiments, azimuthally-sensitive radiation detector 17 and/or radially-shielded radiation source 14 may be oriented downhole to other drilling equipment, including but not limited to, a drilling assembly, whipstock, wireline or memory gyro, or a gyro MWD system. In some embodiments, azimuthally-sensitive radiation detector 17 and/or radially-shielded radiation source 14 may be deployed in a BHA that may be connected to a drilling or whipstock assembly. In some embodiments azimuthally-sensitive radiation detector 17 and/or the radially-shielded radiation source 14 may be deployed, mechanized platforms that allow for azimuthally-sensitive radiation detector 17 and/or the radially-shielded radiation source 14 to be rotated downhole.
In certain embodiments, data regarding the direction of and magnitude readings from radiation detector 17 may be communicated by radiation detector 17 to surface by telemetry methods. In certain embodiments, data regarding the direction of the radially-shielded radiation source may be communicated from radiation source 14 to surface by telemetry methods. Telemetry methods may include, but are not limited to, electromagnetic telemetry, acoustic telemetry, mud pulse telemetry, wired pipe, or wireline communications.
In some embodiments, the influence of background radiation may be mapped and influence removed by turning radiation source 14 off, then performing the same measurements with radiation source 14 on. The orientation corresponding to the highest radiation magnitude may be an indicator of the heading from the target well toward the offset wellbore.
As described above, in some embodiments, instead of rotating a focused radiation detector, such as an azimuthally-focused radiation detector, radiation detector 17 may be displaced from one radial location to another radial location at the same depth in the wellbore, thereby changing the radial distance to the target wellbore and also correspondingly increasing or decreasing the amount of borehole fluid 11 between the radiation detector 17 and radiation source 14. The change in measured radiation at these positions may be a function of the radial proximity to the radiation and the attenuation along a travel path. Thus, by measuring the magnitude of the radiation and combining with the orientation of radiation detector 17 displacements, the direction to first wellbore 10 may be determined.
Certain embodiments of the present disclosure are directed towards a method of using the wellbore ranging and proximity detection system. Radiation source 14 and radiation detector 17 may be positioned in first wellbore 10 and second wellbore 20. In certain embodiments, the position of radiation source 14 in first wellbore 10 and radiation detector 17 in second wellbore 20 may be accomplished using the depth alignment procedure described herein above. In other embodiments, one or both of radiation source 14 and radiation detector 17 are positioned at predetermined positions in first wellbore 10 and second wellbore 20.
Following placement in first wellbore 10, radiation source 14 may be activated, such as for a pulsed neutron generator. Where radiation source 14 is a natural neutron source or a natural gamma source, radiation source 14 may need not be activated. Radiation detector 17 may be activated.
In certain embodiments, as described herein above, radiation source 14 may be rotated. In other embodiments, radiation detector 17 may be rotated. When radiation source 14 or radiation detector 17 are rotated, radiation data may be acquired in a series of orientations. The orientation in which the highest radiation is detected may be considered the direction to the first wellbore. In certain embodiments, neither radiation source 14 nor radiation detector 17 are rotated.
In certain embodiments, once the direction to the first wellbore has been determined, radiation source 14 may be cycled off and on, or removed from the first wellbore. The cycling or removal from the first wellbore of radiation source 14 may be accomplished to confirm that the radiation being detected by the focused radiation detector is from radiation source 14.
Once confirmed, the orientation of radiation detector 17 may be measured by using an azimuth sensor that is configured to measure the sensitive azimuth of the focused radiation detector, for example, a gyroscope, or some other action may be taken, e.g. a whipstock may be set, which may be dependent on the orientation of radiation detector 17. Radiation detector 17 may be coupled to the azimuth sensor.
In certain embodiments, data regarding the direction of radiation detector 17 relative to radiation source 14 may be communicated from radiation detector 17 to the surface by telemetry methods. Telemetry methods may include, but are not limited to, EM transmission, acoustic transmission, or mud pulse.
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a nonprovisional application which claims priority from U.S. provisional application No. 62/333,661, filed May 9, 2016.
Number | Name | Date | Kind |
---|---|---|---|
5481105 | Gold | Jan 1996 | A |
6552333 | Storm et al. | Apr 2003 | B1 |
7351982 | Hofstetter et al. | Apr 2008 | B2 |
8912484 | Korkin et al. | Dec 2014 | B2 |
20060042792 | Connell | Mar 2006 | A1 |
20060186328 | Radtke | Aug 2006 | A1 |
20090296522 | Tang et al. | Dec 2009 | A1 |
20130180780 | Chirovsky et al. | Jul 2013 | A1 |
20150090871 | Chace | Apr 2015 | A1 |
20150309191 | Saenger | Oct 2015 | A1 |
20160024909 | Han | Jan 2016 | A1 |
20160077234 | Zhou | Mar 2016 | A1 |
20160273339 | Wu | Sep 2016 | A1 |
20160282153 | Hefetz | Sep 2016 | A1 |
20170090049 | Ramsden | Mar 2017 | A1 |
20170139063 | Mickael | May 2017 | A1 |
20170176632 | Manclossi | Jun 2017 | A1 |
20190085661 | Dancer | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
1732085 | Dec 2006 | EP |
2014131132 | Sep 2014 | WO |
2015073007 | May 2015 | WO |
2016025238 | Feb 2016 | WO |
Entry |
---|
International Search Report and Written Opinion issued in International Application No. PCT/US2017/031790, dated Jul. 14, 2017 (10 pages). |
European Search Report issued in European Application No. 17796701.5, dated Nov. 28, 2019 (9 pages). |
Number | Date | Country | |
---|---|---|---|
20170321539 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62333661 | May 2016 | US |