This invention relates to the communication of video or audio streams to mobile user terminals or stations by way of Wireless Local Area Networks (WLANs), and more particularly to controlling the quality of service in the presence of breaks in the streaming information.
Wireless Local Area Networks (WLANs) are popular because they are inexpensive and provide remote Internet access with high bandwidth and in a convenient manner. Such WLANs are provided in “hotspot” regions where there is substantial traffic of potential users, such as airports, shopping malls, coffee shops, and the like.
A channel is identified in IEEE 802.11 by its frequency, regardless of the physical layer. IEEE 802.11b provides for higher data rates within a channel with the aid of Direct Sequence Spread-Spectrum coding for reduced interference. In such usage, only a limited number of channels are available, such as three non-overlapping channels in the case of IEEE 802.11b in the U.S. Each mobile user terminal that enters the coverage region of the WLAN must contend with other users in order to gain access to a channel for two-way communication. The IEEE 802.11 standards provide several mechanisms that aid in allowing a user terminal to gain access to or “grab” a channel. Among these are specifications for two different Medium Access Control (MAC) modes. The default mode is the Distributed Coordination Function (DCF), and it is always available in a user terminal. An optional mode that may be used under IEEE 802.11 is the Point Coordination Function (PCF). The PCF mode provides for implementation of Quality-of-Service (QoS) functions, which provide for preferential treatment of certain types of data under network congestion conditions. The PCF mode requires extra software or firmware in the equipment over and above that required by DCF mode. Since the PCF mode is optional and requires more software/firmware, one cannot be certain that a user terminal will be fitted for this mode.
The Distributed Coordination Function (DCF) does not provide quality-of-service (QoS) functions. In normal operation of the DCF-equipped user terminals in the coverage region of a wireless local area network (WLAN), each terminal attempts to acquire the channel. This attempt to gain control of the channel may occur during the time that another user is making use of the channel, and may result in simultaneous transmission of information from two or more entities, which can result in failure to receive either piece of information (packet collision).
The MAC modes provided by the protocols established by IEEE 802.11 are intended to reduce or eliminate the potential for collisions. This is accomplished by having each terminal that wishes to gain control of the channel maintain a Network Allocation Vector (NAV). The NAV information is constantly updated by each user terminal based on “Duration” information transmitted by the access point of the wireless local area network in the header of data and management frames transmitted thereby. The Duration information relates to the time at which the transaction is complete. When the current data and/or management transaction is complete, at the time specified by the NAV, each terminal can then attempt to gain control of the channel. In this scenario, since all the terminals wait until the transaction is finished before attempting to gain control of the channel, there is little loss of data in the process of being transmitted.
The channel acquisition process set forth above is not totally secure, because a terminal could ignore the duration information in the frame header and acquire the channel during those intervals in which the access point is not transmitting frames.
The owner of a wireless local area network (WLAN) may wish to attract more customers to his enterprise by providing additional value, thereby attracting more revenue. One way to add value to his WLAN would be by provision of digitally compressed video (with appurtenant audio) broadcast by one or more channels of the LAN. If the quality of the broadcast video is poor, the added value may be less than intended. The best video service or highest Quality of Service (QoS), including best bandwidth, delay time and potential for packet loss, is achieved by limiting the contention on the video channel. Limiting the contention might be achieved by the use of the Point Coordination Function (PCF) mentioned above. However, one cannot be certain that all the user terminals will be fitted for QoS operation with PCF.
Improved or alternative apparatus and method are desired for providing reduced- or no-contention operation while operating in the DCF mode described above.
A method for broadcasting information, in particular audio/video program data, comprises the steps of procuring sequential frames of the information to be broadcast, and coupling the sequential frames of the information to a medium. In an advantageous mode of the method, the medium includes a frequency channel of a wireless local area network. The transmission system comprises an access point of a local area network conforming to communication standards promulgated by a standards body. The information is transmitted to a coverage region over a dedicated medium. The medium is shared, and access to the medium is based on carrier sense multiple access. The information is received at a user terminal located in the coverage region and compliant with the communication standards. As a result, during intervals in which the length of time between transmitted frames exceeds a predetermined time period, such as an Inter-Frame Space pursuant to the communication standards, the user terminal are permitted to attempt to gain control of the channel. Frames are continuously broadcast from the access point and on the channel, with the transmission of the frames having inter-frame times, which are shorter than the Inter-Frame Spacing pursuant to the communication standards. This inhibits the user terminal from attempting to gain control of the channel medium, thereby allowing the broadcast of the information takes place without contention for control of the channel. This method is particularly advantageous when transmitting audio/video program information in which the information must be transmitted at a particular rate without interruptions.
A method for broadcasting information according to an aspect of the invention includes the steps of procuring sequential frames of the information and coupling the information to a transmission system comprising an access point of a wireless local area network conforming to communication standards promulgated by a standards body. The information is transmitted to a coverage region over a dedicated frequency band channel of the access point. The medium is shared, and access to the medium is based on carrier sense multiple access. The information is received over the dedicated channel at a user terminal, also compliant with the communication standards, and which is located in the coverage region. As a result, the user terminal may attempt to gain control of the channel during intervals in which the length of time between transmitted frames of information exceeds an Inter-Frame Space according to the communication standards. Frames are continuously transmitted from the at least one access point, and on the channel, with inter-frame gaps which are shorter than the Inter-Frame Space according to the communication standards, whereby the user terminal is inhibited from attempting to gain control of the channel and broadcasting of the information occurs without contention for control of the channel.
In an exemplary embodiment of the method, the frames are transmitted by an access point operating in the DCF mode according to the IEEE 802.11 standards and the step of continuously transmitting frames includes the step of transmitting the frames with temporal spacing which is one of (a) Short Inter-Frame Space (SFIS) and (b) Point Inter-Frame Space (PIFS) as set forth in IEEE 802.11 communication standards. The step of procuring information may include procuring at least one of audio and video information, and preferably both.
The compressed video from transcoder 216 is coupled by video LAN 220 to one or more (two illustrated) Wireless LAN (WLAN) access points 230a, 230b. The access points operate in accordance with the IEEE 802.11 standards. Each of access points 230a and 230b communicate with mobile user terminals (one illustrated, designated PDA 240) lying within the coverage area 231 of the WLAN(s). The communication between a user terminal and a WLAN access point is illustrated in
According to an aspect of the invention, the access point, for example access point 230a, is made to appear to be busy at all times, at least on the channel(s) on which the video is broadcast. This is accomplished in conformance with ANSI/IEEE Std. 802.11, 1999 Edition, part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. More particularly, according to the ANSI/IEEE standard a user terminal or station that wants to acquire a channel listens to the medium and, if it detects a silence (no carrier) for a duration known as a Distributed Inter-Frame Space (DIFS), is permitted to attempt access. This is known as carrier sense multiple access (CSMA). The user terminal, according to the standard, should not attempt access within a time after the end of a carrier which is less or shorter than the DIFS. In accordance with the present invention, the access point 230a of
In the time line of
According to an aspect of the invention, one of the SIFS and PIFS is used as the inter-frame time between successive downlink transmissions by the access point 230a of
In
While the illustration of
As mentioned above, the ANSI/IEEE standards provide for the transmission of NAV Duration information to the user terminals. The user terminals, according to the standards, should wait until the end of the NAV time to attempt to access the channel. The WLAN access point 230a of
The arrangement according to the invention provides an exclusive downlink channel from the WLAN access point to the user terminals within its field of coverage with maximized quality of service (QoS) while operating in the DCF mode insofar as the QoS is affected by attempts to effect uplink traffic in the downlink channel. By disabling the uplink channel and traffic from the user terminal or station to the access point, a one-way one-to-many communication channel is established. This one-way channel can be used for video broadcast. Another advantage of the invention is that the method according to an aspect of the invention makes use only of functionality already provided by the communication standards, so there is no need for expensive retrofitting of equipment, and all user terminals receive the benefits of the invention. Put another way, the invention is compliant with the communication standards.
Thus, a method for broadcasting information according to an aspect of the invention comprises the steps of procuring (212) sequential frames of the information to be broadcast, and coupling the sequential frames of the information to a medium (230a, 250). The medium (230a, 250) comprises at least one access point (230a) of a local area network (230) conforming to communication standards (802.11) promulgated by a standards body (ANSI/IEEE). The information is transmitted to a coverage region (231) over a dedicated medium (one channel). The medium is shared, and access to the medium is based on carrier sense multiple access. The information is received at a user terminal (240) located in the coverage region (231) and compliant with the communication standards (ANSI/IEEE 802.11). As a result, during intervals in which the length of time between transmitted frames exceeds an Inter-Frame Space (DIFS) pursuant to the communication standards, the user terminal (240) can attempt to gain control of the channel. Frames are continuously broadcast from the at least one access point (230a) and on the channel, with the transmission of the frames having inter-frame times which are shorter than the Inter-Frame Spacing (DIFS) pursuant to the communication standards (ANSI/IEEE 802.11). This inhibits the attempt by the user terminal (230a) to gain control of the channel, whereby broadcasting of the information takes place without contention for control of the channel. In an advantageous mode of the method, the medium (230a, 250) includes a frequency channel of a wireless local area network.
A method for broadcasting information according to an aspect of the invention includes the steps of procuring (212) sequential frames of the information and coupling (220) the information to a medium (230, 250) comprising at least one access point (230a) of a wireless local area network (230) conforming to communication standards promulgated by a standards body (ANSI/IEEE 802.11). The information is for transmission to a coverage region (231) over a dedicated frequency band channel of the access point (230a). The medium (230, 250) is shared, and access to the medium is based on carrier sense multiple access. The information is received over the dedicated channel (230a, 250) at a user terminal (240), also compliant with the communication standards, and which is located in the coverage region (231). As a result, the user terminal (240) may attempt to gain control of the channel during intervals in which the length of time between transmitted frames of information exceeds an Inter-Frame Space (DIFS) according to the communication standards. Frames are continuously transmitted (
In an exemplary embodiment of the method, the frames are transmitted by an access point operating in the DCF mode according to the IEEE 802.11 standards and the step of continuously transmitting frames includes the step of transmitting the frames with temporal spacing which is one of (a) Short Inter-Frame Space (SFIS) and (b) Point Inter-Frame Space (PIFS) as set forth in IEEE 802.11 communication standards. Operating in this manner, the mobile terminals in the WLAN according to the present invention need not read the PCF information in the beacon message in order for the access point to maintain control of the transmission channel. The step of procuring information may include procuring at least one of audio and video information, and preferably both
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/06193 | 2/27/2004 | WO | 8/12/2005 |
Number | Date | Country | |
---|---|---|---|
60450912 | Feb 2003 | US |