1. Field of the Invention
One or embodiments of the present invention relate to audio decoding, and more particularly, to a surround audio decoding method, medium, and system for selectively decoding an audio signal to a stereo signal or a multi-channel signal.
2. Description of the Related Art
In general, multi-channel audio coding is classified into waveform multi-channel audio coding and parametric multi-channel audio coding. The waveform multi-channel audio decoding includes MPEG-2 MC audio coding, MC MC audio coding, BSAC/AVS MC audio coding, etc., and typically receives 5 encoded channel signals and outputs 5 decoded channel signals. The parametric multi-channel audio decoding typically includes MPEG surround coding, and a decoding terminal would receive 1 or 2 input encoded channel signals and outputs 6 or 8 decoded multi-channel signals.
According to an MPEG surround specification, an input encoded signal can be decoded as a multi-channel signal through a first 5-1-5 tree structure, illustrated in
However, due to increases in use of mobile applications, rather than the multi-channel signals, a stereo channel structure is more frequently used than the multi-channel structure. Thus, there is a problem in that the conventional tree structures do not provide an easy computational simplified technique for generating just the stereo channels, i.e., all channels must typically be decoded by performing the entire staged decoding of the input down-mixed mono signal. For example, referring to
For this reason, in these 5-1-5 tree structures, the signals output from the corresponding OTT0 modules cannot be suitably used for generation of a left and right channel stereo signal. Rather, additional decoding through the remaining OTT modules stages must be performed to ultimately decode the left and right channels, requiring additional computations and resources.
One of more embodiments of the present invention include a stereo signal generating method, medium, and system, for up-mixing a down-mixed signal to a stereo signal, by generating spatial information for up-mixing the down-mixed signal to the stereo signal, using existing spatial information for up-mixing the down-mixed signal to a multi-channel signal.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the invention.
According to an aspect of the present invention, one or embodiments of the present invention include a method for generating a stereo signal, including generating spatial information for up-mixing a down-mixed signal to the stereo signal, using spatial information for up-mixing the down-mixed signal to a multi-channel signal other than the stereo signal, and up-mixing the down-mixed signal to the stereo signal using the generated spatial information.
According to another aspect of the present invention, one or embodiments of the present invention include a method for generating an audio signal, including selectively up-mixing a down-mixed signal to at least one of a multi-channel signal and a stereo signal, wherein up-mixing of the down-mixed signal to the multi-channel signal is accomplished through a multi-staged up-mixing of the down-mixed signal based upon spatial information for up-mixing the down-mixed signal to the multi-channel signal, and
wherein up-mixing of the down-mixed signal to the stereo signal is accomplished by generating spatial information for the up-mixing of the down-mixed signal to the stereo signal based on the spatial information for up-mixing the down-mixed signal to a multi-channel signal and applying the generated spatial information to a single stage to up-mix the down-mixed signal to the stereo signal.
According to another aspect of the present invention, one or embodiments of the present invention include at least one medium including computer readable code to control at least one processing element to implement an embodiment of the present invention.
According to another aspect of the present invention, one or embodiments of the present invention include an system for generating a stereo signal, including a spatial information generator to generate spatial information for up-mixing a down-mixed signal to the stereo signal, using spatial information for up-mixing the down-mixed signal to a multi-channel signal other than the stereo signal, and an up-mixing unit to up-mix the down-mixed signal to the stereo signal, using the generated spatial information.
According to another aspect of the present invention, one or embodiments of the present invention include an system for generating an audio signal, including a plurality of up-mixing modules to selectively up-mix a down-mixed signal to at least one of a stereo signal and a multi-channel signal, and a spatial information generator to generate spatial information for up-mixing the down-mixed signal to the stereo signal, using spatial information for up-mixing the down-mixed signal to the multi-channel signal, wherein up-mixing of the down-mixed signal to the multi-channel signal is accomplished through staged up-mixing by the plurality of up-mixing modules based upon the spatial information for up-mixing the down-mixed signal to the multi-channel signal, and wherein up-mixing of the down-mixed signal to the stereo signal is accomplished through a single up-mixing by one of the plurality of up-mixing modules based upon the generated spatial information for the up-mixing of the down-mixed signal to the stereo signal.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. Embodiments are described below to explain the present invention by referring to the figures.
Referring to
The number of decoding levels may then be determined, e.g., using such an example of the multi-channel configuration of the decoding terminal recognized in operation 200, in operation 210.
Here, in one example, if it is determined that the number of levels calculated in operation 210 is “1”, in operation 220, spatial information for generating a stereo signal can be generated using pre-existing spatial information for decoding of the down-mixed signal to multi-channel signals, e.g., as generated in an encoding terminal, in operation 230. Here, in this example, since the case when the number of levels is “1” corresponds to the case when a single OTT module is used, it may be determined that an output of only a stereo channel is desired. As noted above, the existing spatial information for up-mixing the down-mixed mono signal to multi-channel signals may be Channel Level Differences (CLDs) or Inter-Channel Correlations (ICCs), noting that embodiments of the present invention is not limited to these types of spatial information.
The CLDs are information about an energy ratio or difference between predetermined channels in multi-channels, and are energy ratios corresponding to a time/frequency tile of input signals. Respective CLDs can be calculated by the following Equation 1, for example.
Here, x1 and x2 denote signals input to a corresponding 2-to-1 encoder from a subband domain, n denotes a time slot index, m denotes a subband index, and * denotes complex conjugate.
The ICC is information about correlation or coherence corresponding to a time/frequency tile of input signals, i.e., a similarity between signals.
Similar to above, respective ICCs can be calculated by the following Equation 2.
Here, x1 and x2 denote signals input to a corresponding 2-to-1 encoder from a subband domain, n denotes a time slot index, m denotes a subband index, and * denotes complex conjugate.
If the aforementioned example number of levels is not “1”, the input mono signal may, thus, be decoded and output as a multi-channel signal, e.g., according to the multi-channel configuration of the decoding terminal recognized in operation 200, using such existing CLDs and/or ICCs, in operation 260.
Conversely, if the aforementioned example number of levels is “1”, then, the input down-mixed signal can be up-mixed using the below discussed spatial information generated in operation 230 for up-mixing to a stereo signal, in operation 240.
Successively, temporal processing (TP) or temporal envelope shaping (TES) may then be applied to the up-mixed stereo signal, in operation 250. Here, operation 250 may be omitted in some embodiments.
Referring to
Here, PFL denotes energy of a FL channel, PBL denotes energy of a BL channel, PFC denotes energy of a FC channel, PFR denotes energy of a FR channel, and PBR denotes energy of a BR channel. Further, CLD0 denotes such a CLD as that of the OTT0 module illustrated in
Then, an ICC′ for generating the stereo signal may be calculated using the pre-existing CLDs or ICCs of the signal down-mixed from the multi-channel signals, such as generated in an encoding terminal, in operation 234.
In one embodiment, in operation 234, the ICC′ may be calculated using the techniques described below.
Firstly, an ICC′ may be calculated using linear interpolation. Here, the ICC′ can be calculated by the following Equation 4, for example.
ICC′=α*ICCa+(1−α)*ICCb Equation 4
Here, ICCx denotes an ICC of an OTTx module, CLDx denotes a CLD of the OTTx module, and a may be a constant.
Secondly, a corresponding ICC′ may be read using a look-up table. Here, the ICC′ can be read by the following Equation 5, for example.
ICC′=LUT(ICC0, . . . , ICCN,CLD0, . . . , CLDN) Equation 5
Here, ICCx denotes an ICC of an OTTx module and CLDx denotes a CLD of the OTTx module.
The ICC′ corresponding to the ICC0, . . . , ICCN, CLD0, . . . , CLDN may then be searched for and read from a prepared look-up table. However, it is also possible to use only a specific ICCx or CLDx instead of using all of the ICC0, . . . , ICCN, CLD0, . . . , CLDN.
Thirdly, the ICC′ may be calculated using correlation of ICCs. For example, in the aforementioned second 5-1-5 tree structure, the ICC′ may be calculated by the following Equation 6.
Here, ICCx is an ICC of an OTTx module, CLDx is a CLD of the OTTx module, and a and b may be constants.
In this example, the equation 6 can be derived using the following Equations 7-12.
Here, L′ denotes a subband signal of a left channel of a target, R′ denotes a subband signal of a right channel of the target, C′ denotes a subband signal of a center channel of the target, PL′ denotes energy of the left channel of the target, PR′ denotes energy of the right channel of the target, PC′ denotes energy of the center channel of the target, a is a constant, and * denotes complex conjugate. Here, a may be set to “1/squrt(2)” and b may be set to “1”, for example.
The above Equation 6 can be obtained by substituting the Equations 1 through 11 for the Equation 12 using inner product principle.
The spatial information generator 300 generates spatial information for generating the stereo signal, using pre-existing spatial information for the input down-mixed mono signal, e.g., as previously generated during a down-mixing to the mono signal from multi-channel signals in an encoding terminal. Again, though the spatial information has been discussed as being CLDs or ICCs, embodiments of the present invention is not limited thereto.
Here, the spatial information generator 300 may include a CLD′ calculator 302 and an ICC′ calculator 304.
The CLD′ calculator 302 may calculate a CLD′ for generating the stereo signal, using pre-existing CLDs of the signal down-mixed from the multi-channel signals, such as generated in an encoding terminal, which may be received through an input terminal IN1, for example. Here, the CLD is not an energy decibel difference between two channels but an energy ratio between two channels. When the CLD′ calculator 302 calculates the CLD′, if a CLD of the OTT1 module illustrated in
The ICC′ calculator 304 may further calculate an ICC′ for generating the stereo signal, using pre-existing CLDs or ICCs of the down-mixed signal, e.g., with the ICCs being received through an input terminal IN2. At this time, the ICC′ can be calculated using any of the above techniques describe in Equations 4-12.
The up-mixing unit 310 may then up-mix a down-mixed signal, e.g., received through an input terminal IN0, to a stereo signal, using the spatial information generated by the spatial information generator 300, such as the CLD′ calculated by the CLD′ calculator 302 and the ICC′ calculated by the ICC′ calculator 304.
The TP/TES applying unit 320 illustrated in
In addition to the above described embodiments, embodiments of the present invention can also be implemented through computer readable code/instructions in/on a medium, e.g., a computer readable medium, to control at least one processing element to implement any above described embodiment. The medium can correspond to any medium/media permitting the storing and/or transmission of the computer readable code.
The computer readable code can be recorded/transferred on a medium in a variety of ways, with examples of the medium including magnetic storage media (e.g., ROM, floppy disks, hard disks, etc.), optical recording media (e.g., CD-ROMs, or DVDs), and storage/transmission media such as carrier waves, as well as through the Internet, for example. Here, the medium may further be a signal, such as a resultant signal or bitstream, according to embodiments of the present invention. The media may also be a distributed network, so that the computer readable code is stored/transferred and executed in a distributed fashion. Still further, as only an example, the processing element could include a processor or a computer processor, and processing elements may be distributed and/or included in a single device.
In a stereo signal generating method, medium, and system, according to an embodiment of the present invention, a down-mixed signal can be selectively up-mixed to a stereo signal, by generating spatial information for up-mixing the down-mixed signal to the stereo signal, using spatial information for up-mixing the down-mixed signal to a multi-channel signal.
Accordingly, since a down-mixed mono signal, e.g., as generated from a down-mixing of multi-channel signals in an encoding terminal, is up-mixed to be suitable for a stereo signal, it is possible to improve tone quality of the resultant stereo signal.
Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0049035 | May 2006 | KR | national |
10-2006-0111240 | Nov 2006 | KR | national |
This application claims the benefits of U.S. Patent Application No. 60/778,933, filed on Mar. 6, 2006, in the U.S. Patent and Office and, Korean Patent Application No. 10-2006-0049035, filed on May 30, 2006 and No. 10-2006-0111240, filed on Nov. 10, 2006, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein in their entireties by reference.
Number | Name | Date | Kind |
---|---|---|---|
7305097 | Rosen et al. | Dec 2007 | B2 |
7394903 | Herre et al. | Jul 2008 | B2 |
7447629 | Breebaart | Nov 2008 | B2 |
7573912 | Lindblom | Aug 2009 | B2 |
7711552 | Villemoes | May 2010 | B2 |
7720230 | Allamanche et al. | May 2010 | B2 |
7983424 | Kjorling et al. | Jul 2011 | B2 |
8577686 | Oh et al. | Nov 2013 | B2 |
20030219130 | Baumgarte et al. | Nov 2003 | A1 |
20050074127 | Herre et al. | Apr 2005 | A1 |
20050157883 | Herre et al. | Jul 2005 | A1 |
20050195981 | Faller et al. | Sep 2005 | A1 |
20050271214 | Kim | Dec 2005 | A1 |
20060093164 | Reams et al. | May 2006 | A1 |
20060153408 | Faller et al. | Jul 2006 | A1 |
20060233380 | Holzer et al. | Oct 2006 | A1 |
20070223709 | Kim et al. | Sep 2007 | A1 |
20090319281 | Baumgarte et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
2004-078183 | Mar 2004 | JP |
10-2010-0115801 | Dec 2005 | KR |
10-2007-0091518 | Sep 2007 | KR |
WO 0207481 | Jan 2002 | WO |
WO 2005036925 | Apr 2005 | WO |
WO 2005101370 | Oct 2005 | WO |
WO 2005101371 | Oct 2005 | WO |
Entry |
---|
Eric D. Scheirer et al., “AudioBIFS: Describing Audio Scenes with the MPEG-4 Multimedia Standard”, IEEE Transactions on Multimedia, vol. 1, No. 3, Sep. 1999. |
International Search Report dated Jun. 14, 2007, corresponds to PCT International Application No. PCT/KR2007/001067. |
Notice of Allowability dated Sep. 20, 2007 corresponds to Korean Patent Application No. 10-2006-0111240. |
Notice of Allowability dated May 31, 2007 corresponds to Korean Patent Application No. 10-200-0067133. |
Korean Office Action dated Mar. 8, 2011 corresponds to Korean Patent Application No. 10-2007-0067133. |
European Search Report issued Nov. 28, 2011 corresponds to European Patent Application No. 07715471.4. |
Korean Notice of Allowance dated Sep. 20, 2007 corresponds to Korean Patent Application No. 10-2006-0111240. |
Number | Date | Country | |
---|---|---|---|
20070223709 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60778933 | Mar 2006 | US |