The invention is in the fields of mechanical engineering and construction, especially mechanical construction, for example automotive engineering, aircraft construction, shipbuilding, machine construction, toy construction etc. It more particularly relates to manufacturing articles including a step of fastening objects to each other as well as to adhesive compositions for such manufacturing methods.
In the automotive, aviation and other industries, there has been a tendency to move away from steel constructions and to use lightweight material such as fiber composites, especially carbon fiber reinforced polymers or glass fiber reinforced polymers, instead.
While fiber composite parts may, given a sufficiently high fiber content and average fiber length and given an appropriate fiber orientation, be manufactured to have considerable mechanical strength, the mechanical fastening of a further object, such as a connector (dowel or similar) thereto is a challenge. Conventional riveting techniques are suitable only to a limited extent, especially due to the small ductility of the fiber composite materials. Also, since such connections require pre-drilling at the position where the further object is to be attached, precision of the positioning may be an issue, especially if several parts that are connected to each other are to be attached to the fiber composite part. A further disadvantage is that pre-drilling weakens the object to which the connector (or similar) is fastened. Adhesive connections may work well but suffer from the drawback that the strength of a bond cannot be larger than the strength of an outermost layer and of its attachment to the rest of the part. Further, curable (thermosetting) adhesives always require a certain curing time for cross-linking. This will considerably increase the production time in case of industrial production. In order to solve this problem, it has been proposed to use UV curable adhesives that tend to cure faster than thermally curing adhesives. However, they require at least partially transparent connectors to allow the curing radiation to reach the curable adhesive. In addition, glue lines depending on the set-up may suffer from sensitivity in terms of layer thickness and homogeneity of glue distribution.
Similar challenges exist for adhesive connections to other materials.
WO 97/25360 discloses adhesives compositions on a polyurethane prepolymer basis for bonding glasses to other substrates, such as metal or plastics, for example for bonding a glass window to a window frame of an automobile. The compositions may comprise encapsulated curing agents, of which the particles are ruptured, especially by the application of heat, shear forces, ultrasonic waves or microwaves or by the composition being forced through a screen that at its smallest point is smaller than the particle size. Also WO 2008/094368 discloses rupturing encapsulations with a curing agent by applying ultrasonic energy for the purpose of adhering a glass panel to components of a vehicle. These teachings while trying to solve specific problems in car manufacturing do not address the above-mentioned challenges in a general manner.
It would therefore be advantageous to provide a method of fastening a further, second object (for example a connector) to a first object, which overcomes drawbacks of prior art method and which especially yields a strong reliable mechanical bond. It is a further object to provide compositions suitable for this purpose.
According to an aspect of the invention, a method of fastening a second object to a first object is provided, the method comprising:
In this text, “resin” denotes any substance that is flowable (generally a viscous liquid) and is capable of hardening permanently by covalent bonds generated between molecules of the resin and/or between molecules of the resin and other substances. For example, the resin may be a composition comprising a monomer or a plurality of monomers or a prepolymer in a flowable state that is capable of changing irreversibly into a polymer network by curing.
The activation step by reducing the viscosity and/or releasing a substance may comprise removing or lowering a barrier to intra-composition mobility. In embodiments with a plurality of the elements dispersed in the resin, the elements need not necessarily be solid but may for example be dispersed in the resin meta-stably, so that they form an emulsion together with the resin. Activation by the mechanical vibration may then comprise causing a local micro-circulation to promote mixing and thereby to significantly enhance the reaction surface between the phases (between the elements and the resin) to trigger a reaction.
It has been found by the inventors that the mechanical vibration may be caused to take effect in three possible ways: Firstly, it may result in an increased mobility within the resin composition, for the resin itself, by the viscosity of the resin being reduced and/or for an other substance of the composition, for example in some embodiments by the substance being initially contained in the particles and being released. In addition, in embodiments the vibration may cause the resin to become well distributed and to completely wet/interpenetrate and if applicable embed any structure on the attachment surface (the first attachment surface or a second attachment surface of the second object) thereby cause the resin to penetrate into such structure relatively deeply.
Secondly, the mechanical vibration energy is primarily absorbed at the interface between the first object and the second object and in the resin, thereby stimulating the curing process. More precisely, the resin has to be found to cure rather efficiently and predominantly at the interface. Thus, the vibration will then cause an increase in viscosity and a rapid hardening.
Thirdly, the mechanical vibration causes the activation. As explained in more detail hereinafter, if the activation comprises an activation of the particles, this may take effect in different ways.
If the attachment surface is provided with an according structure, after the hardening process, the resin in addition to causing a material connection (i.e. an adhesive bond) may also cause a positive-fit connection due to the fact that it has interpenetrated the structure, which structure may include undercuts.
In practice, it has been found (for example using a commercially available two-component epoxy adhesive as the resin) that the curing process is accelerated compared to how quick it would have been without the ultrasonic vibration by at least an order of magnitude. As a role of thumb, a temperature increase of about 10° C. reduces the setting time by 50%. In practice, a short term (for example 2-3 s), ultrasound induced temperature increase of about 50° C. or even 100° C. may be observed.
The resin composition may be composed to be capable of being subject to a vibration induced activation.
A first group of embodiments concerns a resin composition the viscosity of which may be reduced by vibration before the cross-liking process raises the viscosity again.
In embodiments of this first group, the resin composition initially, during the step of placing, has a rather high viscosity, even to an extent that it is perceived to be almost solid and essentially not sticky. Then, in the step of providing, the first and/or second object may be provided with the resin as pre-applied coating. It is for example possible that a plurality of first and/or second objects are stored with the resin coating already applied.
For example, in a sub-group of the first group, the resin may be pre-polymerized prior to the step of placing the second object relative to the first object, i.e. pre-polymerized prior to being applied. The pre-polymer may have a liquefaction temperature (melting temperature or other temperature at which it becomes sufficiently flowable) that is above the temperature at which the objects are initially provided (room temperature for most applications).
In a further sub-group of the first group, the resin composition comprises an additive that has a stabilizing effect. An example of such a stabilizing additive is bentonite. Bentonite is, according to the prior art, known for paints that do not drip and that become sufficiently flowable only when under mechanical stress (thixotropy effect). The viscosity thus is decreased as soon as, by the mechanical vibration, the shear rate goes up.
In an even further sub-group the composition has an additive that reduces the viscosity because it has a low glass transition and/or liquefaction temperature.
In embodiments, including embodiments of the mentioned sub-groups, the resin composition may be thixotropic.
Resin compositions that have the property of being relatively solid at room temperature and that may be hardened by being heated are known in the art.
The present invention according to the first group of embodiments adds the following function
Due to the increased mobility within the activated resin composition, the cross-linking process is stimulated to a large extent.
In special embodiments of the first group, the composition comprises abrasive particles.
In a second group of embodiments, the resin composition is composed to be activatable by mechanical vibration by the fact that it comprises at least one element, for example particles, capable of being activated.
Generally, it is possible to combine properties of the first group with properties of the second group, i.e. embodiments may belong to both groups by being capable of reducing the viscosity upon activation and by additionally comprising an activatable element, for example particles.
Such activatable particles may comprise polymer particles, especially thermoplastic particles. Upon absorption of vibration energy, these particles are heated by internal and/or external friction. Thereby, they transfer energy to the surrounding material. Similar considerations apply for auxiliary elements that do not necessarily need to qualify as particles, for example a distance holding spacer of thermoplastic material.
In a sub-group of embodiments, the element is/the particles are of a material that remains essentially solid during the process, i.e. the optimal cross-linking temperature of the resin is well below the temperature at which the element/particle material becomes flowable. However, the optimal cross-linking temperature may be around the glass transition temperature of the material or slightly above this glass transition temperature, because vibration energy absorption—and hence heat dissipation to the resin—becomes higher as soon as the glass transition temperature is reached.
A typical candidate for a material for an element/for particles of this sub-group comprises a cross-linked elastomer. Above the glass transition temperature, such material absorbs the vibration energy by transforming it into heat that further enhances the internal heating process of the resin. Typical candidates are Butylene Rubber, or Polyurethane, as for example described in P. H. Mott et al, J. Acoust. Soc. Am. 111 (4), April 2002, P. 1782-1790.
In a further sub-group of embodiments, the activation of activatable particles (or an other auxiliary element), especially thermoplastic particles, is used for controlling the temperature of the resin and/or heat dissipation to the resin.
Especially, in embodiments of this sub-group, the element/particles may comprise a substance capable of undergoing a first order phase transition (a phase transition involving a latent heat). The phase transition temperature of such substance may especially be chosen to be below the critical temperature (overheating temperature) of the resin but sufficiently high for the curing process to be substantially stimulated.
It has been found that, depending on the set-up, the resin composition sometimes is primarily heated at the interface to the second object and/or to the first object, especially at the more proximal of these interfaces (the interface between the one object into which mechanical vibration is coupled and the resin composition). This may be due to interface effects and/or to a heating of the respective more proximal object itself by the mechanical activation. The effect may cause local overheating of the resin composition and/or insufficient activation/curing at other places than the one interface, for example at the other interface and/or in an interior.
In accordance with embodiment of this sub-group, the substance capable of a first order phase transition is a thermoplastic material. Other substances capable of undergoing a first-order phase transition (thus having a latent heat) or other substances having a high heat capacity would be suitable as well.
In embodiments of this sub-group or generally in embodiments of the second group, therefore, thermoplastic particles are dispersed in the resin. Especially, the thermoplastic particles may be of the kind that may be subject a phase transition, especially a first-order phase transition (melting-crystallization of at least some zones for example), at a temperature below the overheating temperature of the resin but sufficiently high for the curing process to be substantially stimulated. Especially, such phase transition temperature may be in the region of the optimal cross-linking temperature of the resin, which is a temperature above a threshold temperature for the cross linking to start if such threshold temperature is defined. Such optimal cross-linking temperature is derivable from the specification of the resin and is a material property.
A filler having a first-order phase transition brings about the effect that an overheating of the resin is prevented in that the particles absorb heat as soon as the first order phase transition temperature is reached and as long as not all material of the filler has undergone the phase transition. Thereby, the temperature is stabilized. Further, after the energy input by the mechanical vibration stops, the resin cools down only slightly, and then heat dissipation from the filler into the resin sets in, whereby a further cooling down is stopped or at least substantially delayed. Often, the melting temperature is somewhat higher than the crystallization temperature (hysteresis behavior), depending on the cooling velocity and the nucleation of the polymers. Thereby, the time duration of the required vibration input is reduced compared to the time it takes for the resin to sufficiently cross link when it is at the optimal cross-linking temperature.
Especially if the filler comprises thermoplastic particles, the particles may have one or more (for example all) of the following properties.
Chemical bonds between the resin and the particle surface prevent cracks from progressing along the surfaces of the particles.
An example of a substance that is suitable as filler of a resin is emulsion polymerization powder of PA11 or PA12, with the powder particle surfaces being surface treated (for example silanized) by a linker for the particular resin/hardener system.
Alternative suitable fillers capable of undergoing a first-order phase transition are particles of phase change materials (PCMs), including materials with a solid-solid phase transition, for example X180 of PCM product limited.
More generally, fillers of a material capable of undergoing a first-order phase transition may be capable of undergoing any first-order phase transition. i.e. a phase transition that involves latent heat, including but not limited to solid-liquid and solid-solid first order phase transitions.
In addition or as an alternative, a filler of elements that homogenize the temperature distribution across the resin are particles of highly efficient heat conducting material such as copper, aluminum, carbon based materials (graphite, fullerenes, nanotubes, etc.), heat conducting ceramics such as silicon carbide, etc.
An interesting category of materials suitable as material of filler particles are materials that have a high internal friction so that they generate heat when they are mechanically loaded. This is especially the case for visco-elastic material that forms a hysteresis during a loading-unloading cycle. This damping capability is expressed by the loss tangent (tan δ) properties of the visco-elastic material. A particularly interesting group of materials are PTFE based materials, since they combine a high internal friction with a good heat conducting capability (i.e. in addition to heating themselves they contribute to a good heat distribution). An other group are elastomeric materials, also if they are not thermoplastic.
Activatable particles of the hereinbefore discussed kind, especially if they do not, or at least not entirely, liquefy, may, in addition to serving for activating the resin by exchanging heat with the resin, also serve as distance holders between the first and second object when the first and second objects are pressed against each other for being connected, with the resin composition between them. This is for example especially the kind for the hereinbefore discussed elastomer particles. The distance holder effect may be advantageous for maintaining a certain minimum height of the adhesive gap between the objects fastened to each other.
The above teaching as far as relating to activatable thermoplastic particles also applies to auxiliary thermoplastic elements that do not necessarily qualify a particles. For example, such element may have a dimension sufficiently large to be in contact with both, the first and second attachment surfaces (with in each case a possible thin resin layer in-between). Thereby, it may have at least one of the functions heating element for the cross linking activation (as discussed hereinbefore); distance holder between the first and second objects; mechanical stabilizer of the connection between the first and second objects, especially together with the measure of an attachment surface with an attachment structure defining an undercut, as discussed hereinafter.
In a group of embodiments, the first attachment surface and/or the second attachment surface comprises/comprise an attachment structure. Such attachment structure may comprise an arrangement of protrusions and/or indentations.
It may firstly serve for stabilization: Firstly, it is after the process penetrated by material of the resin composition, i.e. by the hardened resin or by re-solidified thermoplastic material of the element (such as the dispersed particles or (other) auxiliary element). Thereby, it adds stability to the effect of the adhesive. This is especially the case if the attachment structure comprises undercut protrusions and/or indentations whereby the first and/or second object is secured by a positive-fit connection.
Secondly, the attachment structure may have structures that serve as energy directors when they are in physical contact with thermoplastic material of the element(s) when the mechanical vibration impinges.
Attachment structures may also comprise a high surface roughness, for example by sandblasting using sharp grains, with a roughness (Ra) of for example more than 50 or 100 micrometers.
In connection with resin material that hardens comparably slowly (for example polyurethane), the stabilization effect may be used for a temporal stabilization: if the thermoplastic element(s) is/are is sufficiently large bridge the gap between the first and second objects (for example if they serve as distance holders), then the thermoplastic material after having flown relative to the attachment structures and after re-solidification serves the first and second objects relative to each other by a positive-fit connection. This allows the arrangement of the first and second objects to be removed from the processing station where they are secured to each other and to be further processed while the resin hardens.
Especially in embodiments in which the element(s) environed by the resin is/are thermoplastic, it may be advantageous to choose an elastic modulus (Young's modulus) that is similar to the elastic modulus of the resin once the resin has fully hardened. For example, the elastic modulus of the thermoplastic at room temperature may be not less than 30% below and not less than 50% above the elastic modulus of the hardened resin. The elastic modulus of thermoplastic materials is a well-known quantity known from data sheets etc., and the skilled person may choose between similar materials having different elastic moduli. If the elastic moduli of the resin and of the thermoplastic material are adapted to each other, hard spots in the joint may be avoided, and this may be beneficial for long-term stability.
In an other embodiment, the activatable particles comprise particles that when being mechanically loaded form a self-stabilizing particle network (especially a so-called “percolating network”) that is capable of transferring mechanical vibration.
Activation may comprise causing friction between the particles of the particle network, whereby heat is generated and transferred to surrounding resin.
Particles suitable for this purpose may comprise ceramic or glass particles.
Such self-stabilizing network also has the possible effect of being a distance holder, thereby defining the thickness of the adhesive (resin) layer.
In addition or as an alternative, such particles may comprise an activation component, for example at least one of:
The activation component may be contained in vesicles that comprise the activation component in a membrane that is being broken (destroyed/ruptured) due to effects that are present when mechanical vibration impinges, for example high shear rates, pressure pulses, cavitation effects or thermal effects.
In addition or as an alternative, the activation component may be present as particles, for example droplets, dispensed in the resin. Especially, the manufacturing of the resin composition may comprise generating a metastable segregation between the resin on the one hand and the activation component on the other hand. Activation by the mechanical vibration will cause the energy barrier for mixing to be overcome and will thus cause an at least partial dissolution of the activation component in the resin. Similarly, the activation component may be present in the form of particles the viscosity of which is too high for mixing prior to activation but in which the activation by the mechanical vibration reduces the viscosity (due to heating and/or thixotropy effects) so that subsequently the activation causes a homogenization.
In these embodiments, as well as in embodiments that comprise heating up the particle—directly or indirectly by absorbing energy from the resin—and embodiments that comprise moving the particles between each other, the activation concerns the entire particles, i.e. the bulk of the particle material. This is in contrast to the embodiments in which activation merely comprises releasing an activation component by a membrane being ruptured, where the activation merely concerns the particle surface/the membrane.
The term “particles” as used in this text also includes metastable droplets and separated other (second) phases of a material.
An advantage of providing a substance in small particles (vesicles or particles directly dispensed in the resin) within the composition is that the diffusion paths are much shorter than if the substance is only present at a surface of the resin. A further advantage is that activation is possible also of resin compositions that are difficult to activate by thermal effects, such as polyurethane pre-polymers.
In a further group of embodiments, the particles comprise a substance that takes effect by being released from a surface of the resin composition.
It has been described in this text that particles capable of absorbing heat, especially particles comprising a substance capable of a first-order phase transition, are suitable for stabilizing the temperature and thereby causing the temperature distribution across the resin to be homogeneous. Other measures to this effect are possible in addition or as an alternative:
In many embodiments, for example, for the process that comprises the mechanical vibration to act on the second and/or first object, one of the objects (the distal object) is held against on a non-vibrating support, while the other one of the objects (the proximal object) is pressed against the distal object by a vibrating tool, with the resin composition between the objects. For a homogeneous temperature distribution, the non-vibrating support may be configured not to absorb too much heat.
In embodiments, the vibration power coupled into the assembly of the first and second objects with the resin composition between them follows a time dependent profile. To this end, for example the vibration amplitude may be accordingly modulated while the frequency remains constant; vibration frequency modulation is not excluded though. Especially, the vibration power input may be smaller in an initial phase so that wetting of the first/second object by the resin is supported and/or the viscosity is caused to be reduced, while there is no substantial cross-linking. In this first phase, the pressing force may be comparably high to support the wetting process. Then, in a second phase, the vibration power may be higher to initiate the cross-linking and, if applicable, to activate the particles, for example to release a substance, to melt, etc. During this second phase, in some embodiments the pressing force may be reduced to make a relatively free vibration possible. In an optional third phase, the vibration may be switched off while a pressing force, for example an increased pressing force, is maintained.
In other embodiments in which the vibration power follows a time dependent profile, the vibration may be repeatedly switched on and off, with for example on and off times of a few seconds each (such as 1-3 s) for example combined with a longer holding phase after the last vibration input. In an example, the on and off times are 2 s each, with 3 on-off-cycles, and with a holding time that is long enough for the total process to take place 3 minutes.
In embodiments, the first object comprises a fiber composite part comprising a structure of fibers embedded in a matrix material. In a group of embodiments, the fiber composite part will especially comprise a portion of the structure of fibers being exposed at the first attachment surface. Flowable resin material then is caused to interpenetrate the structure of fibers, possible voids in the material are caused to evade. The vibrations may also cause small motions of the fibers themselves, and this helps to prevent spots from not being impregnated at all. An exposed structure of fibers will naturally comprise structures that define an undercut, whereby the above-mentioned positive-fit connection is achieved without any additional measures being required.
In particular, the method may comprise the step of causing the portion of the structure of fibers to become exposed, especially by removing an outermost portion of the matrix.
The resin used in these embodiments may be of a same chemical composition as the matrix material of the fiber composite part, or it may be of a different composition.
In other embodiments, the first object has a surface of any other material, including a metal or a ceramic material, in both cases with or without added surface roughness.
A tool by which the vibration is applied may be a sonotrode coupled to a device for generating the vibration. Such a device may for example be a hand-held electrically powered device comprising appropriate means, such as a piezoelectric transducer, to generate the vibrations.
The mechanical vibration may be longitudinal vibration; the tool by which the vibration is applied may vibrate essentially perpendicular to the surface portion (and the tool is also pressed into the longitudinal direction); this does not exclude lateral forces in the tool, for example for moving the tool over the surface portion.
In other embodiments, the vibration is transverse vibration, i.e. oscillation predominantly at an angle, for example perpendicular, to the proximodistal axis and hence for example parallel to the first and second attachment surfaces. Vibration energy and amplitude in this may be similar to parameters of longitudinal vibration.
In a further group of embodiments, which may be viewed as a sub-group of embodiments with transverse vibration, the oscillation may be rotational oscillation, i.e. the vibrating item vibrates in a back and forth twisting movement.
The mechanical vibration may be ultrasonic vibration, for example vibration of a frequency between 15 KHz and 200 kHz, especially between 20 KHz and 60 kHz. For typical sizes of second objects (for example with characteristic lateral dimensions of about 1 cm) and dimensions of composite parts for example for the automotive industry (car body parts), a power of around 100-200 W has turned out to be sufficient, although the power to be applied may vary strongly depending on the application.
In any embodiment, there exists the option of carrying out the method by a tool that comprises an automatic control of the pressing force. For example, the device may be configured to switch the vibrations on only if a certain minimal pressing force is applied, and/or to switch the vibrations off as soon as a certain maximum pressing force is achieved. Especially the latter may be beneficial for parts of which an undesired deformation must be avoided, such as certain car body parts.
To this end, according to a first option the capability of piezoelectric transducers to measure an applied pressure may be used. According to a second option, a special mechanism can be present in the device. For example, a unit that contains the transducer and to which the tool (sonotrode) is attached may be mounted slideable against a spring force within a casing. The device may be configured so that the vibrations can be switched on only if the unit is displaced by a certain minimal displacement and/or only if it is not displaced by more than a certain maximum displacement. To achieve this, means well-known in the art such as light barriers, sliding electrical contacts, position sensitive switches or other means may be used. Also a collapsible sleeve or similar of the kind described hereinafter may contain or operate a contact or switch or similar to control the pressing force.
The vibration frequency can influence the manner in which the vibrations act. A lower frequency will lead to a longer wavelength. By adapting the wavelength to the dimensions of the part to be completed, the operator can have an influence on in which depth the effect of the vibrations is the strongest and on whether the energy is primarily absorbed in a ‘near field’ regime, in a ‘far field’ regime or in an intermediate regime.
In the following, ways to carry out the invention and embodiments are described referring to drawings. The drawings are schematical. In the drawings, same reference numerals refer to same or analogous elements. The drawings show:
In the depicted embodiment, the first object comprises a fiber composite material at least at the first attachment surface. However, other surfaces with suitable physical (roughness, porosity) and/or chemical properties are suitable as well. Especially, suitable first object and/or second materials include metals, ceramic materials, wood or wood-based material, other plastic materials than fiber composites, etc., all with or without surface roughening.
For illustration purposes, in all depicted examples, the first object is shown to have a general flattish shape. All examples of the invention are, however, also applicable to first objects that are not flattish but have any other shape.
Also the second object may have any shape, as long as a common attachment interface comprising a first attachment surface and a second attachment surface is formed. Especially, in embodiments the second object may be a connector comprising a fastening structure for fastening a further object to the second object and thereby to the first object.
The second object may have any material suitable for the specific purpose of the second object and further for an adhesive connection with the first object via the resin. For example, the second object may comprise at least on of a metal, a ceramic, a polymer based material, for example a composite, etc. Especially, in embodiments the second object may comprise a fiber reinforced composite, especially with fiber exposed at the second attachment surface. Other surfaces with suitable physical (roughness, porosity) and/or chemical properties are suitable as well.
The second object is illustrated to have a distinct structure on a distal side thereof for example a plurality of indentations, for example channels. The distal surface of the second object forms a second attachment surface of the configuration.
The second object may for example be a fastener for fastening a further object to the first object.
For fastening the second object and the first object to each other, a sonotrode 6 is used to press the second object against the first object, with the resin composition portion 3 between the parts, while mechanical vibration is coupled via the sonotrode into the second object 2. It has been found that the mechanical vibration has a double effect: Firstly it causes the resin to become well distributed and to completely wet/interpenetrate and if applicable embed any structure on the attachment surfaces, thereby cause the resin to penetrate into such structure relatively deeply. Secondly, the mechanical vibration energy is primarily absorbed at the interface between the first object and the second object and in the resin, thereby stimulating the curing process.
In
According to a group of embodiments, the resin composition has a viscosity that is initially relatively high (for example, the resin composition may be pasty or rubber-like/waxy) and that is reduced as a result of the activation.
Generally, in embodiments, the viscosity drops by at least an order of magnitude (by at least a factor 10), and for example a plurality of orders of magnitude (by at least a factor 100) by the effect of the activation by the mechanical vibration.
The diffusion 21 of any particle or substance within the resin composition will be relatively low initially and substantially rise after the onset of the vibration, as shown in
Examples for substances contained in the particles comprise a substance that activates the resin/resin composition itself and/or comprise a substance that impinges on the first and/or second attachment surface, as described hereinbefore.
An embodiment that uses the effect of a viscosity behavior as illustrated in
After the resin becomes sufficiently flowable, the particles will be pressed into the interior of the composition and will remain dispensed therein. The resin composition is bonded to the then roughened surface.
The first object 1 may be of any nature. In
The resin composition 3 is present as a coating of the second object, in
A further possible function, depending on the structure of the first and/or second object is a contribution to the anchoring as explained hereinafter referring to
Particle materials that are particularly suited for heat transmission/heat conduction comprise diamond, graphite, carbon(mono), aluminum nitride, boron nitride.
The arrangement of
As discussed hereinbefore, the filler firstly brings about the effect that an overheating of the resin is prevented in that the particles absorb heat as soon as the first order phase transition temperature (the melting temperature in the discussed embodiment) is reached and as long as not all thermoplastic material has liquefied. Thereby, the temperature is stabilized. Secondly, after the energy input is switched off, the particles dissipate heat and thereby prolong the effect of the energy input. Therefore, the processing time during which the energy is coupled into the assembly can be reduced for a given curing time. Especially, the processing time may be shorter than the time it takes for the resin to sufficiently cross-link at the processing temperature (which approximately corresponds to the melting temperature).
The mechanical vibration input during a first stage is relatively small, with a small vibration amplitude, whereby a thixotropy and wetting effect is achieved, i.e. the first stage has the purpose of supporting the wetting process for securing an intimate contact between the resin composition and the objects to be joined. In this first stage, the energy input is sufficiently low to keep chemical reactions (especially cross-linking) at a minimum. This may especially be important for highly reactive systems, for example two-component systems intermixed in the liquid state.
Thereafter, in a second stage, the amplitude is higher, whereby the cross-linking process is accelerated. Then, the vibration is switched off.
The force in the first stage is relatively high to support the wetting process. Then, while the vibration amplitude is high, the force is for example reduced, especially to enable a vibration relative to one another of the objects to be joined, whereby the coupling of vibration into the resin is enabled.
In an optional third stage (pressure holding stage), the force may be maintained or even, as in the illustrated embodiment, raised, to compensate for a shrinking during the cross-linking phase.
Hereinafter, configurations are described that work both, as configurations for carrying out the method according to the present invention and as configurations for carrying out a method of fastening a second object to a first object with a conventional resin or other resin composition.
A possible challenge in this may be that depending on the stiffness of the second object 2 it may be difficult to selectively couple the vibration through the second object into the desired spot without too much vibration energy being dissipated by flowing away laterally.
In
A further possible solution to the problem of selectively coupling vibration energy into a desired spot is illustrated in
In embodiments, like in
In embodiments, it is advantageous if the resin composition 3 can be laterally confined to a defined region between the first and second objects at least partially.
Similarly, as illustrated in
In embodiments of the kind shown in
These two differences are independent of each other and do not necessarily have to be combined.
Instead of both, the first and second objects having an attachment structure, it would also be possible for just one of the objects to have such a structure.
A targeted attachment structure may for example be manufactured by a shaping process known in the art, such as laser ablation, or also a depositing process or an embossing or molding process, or in the case of surface roughness also by grinding with rough grinding means.
As an alternative to a mesh, also other structure impregnatable by the resin may be used, for example a cord structure or similar.
The embodiment of
Number | Date | Country | Kind |
---|---|---|---|
01346/16 | Oct 2016 | CH | national |
01612/16 | Dec 2016 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/075538 | 10/6/2017 | WO | 00 |