For purpose of facilitating and understanding of the invention, a preferred embodiment thereof is illustrated in the accompanying drawing to be considered in connection with the following description. Thus the invention may be readily understood and appreciated.
Referring to
The hearing aid 1 further comprises a venting canal 8 that connects the ear canal 2 with the environment.
The influence of the pinna 9, surrounding the front side of the shell of the hearing aid 1, to the microphones 3 and 4 are shown by arrows symbolizing the path of the environmental sound S. This sound will arrive at the microphones both directly as well as reflected by the pinna 9.
If the user of the hearing aid 1 wants to switch from the regular directional use to the omni-directional use, in one embodiment, the better of the two microphones 3 and 4 remains connected to the amplifying processing unit 5 and the other microphone will be disconnected from the amplifying processing unit 5.
This switching is performed i.e. by using a switching unit as described in EP 1 221 276.
In another embodiment of the present invention, both microphones 3 and 4 remain connected to the amplifying processing unit 5. The amplifying processing unit 5 will set only one of those microphones active for determined ranges of frequencies, i.e. by applying respectively set filters. As an example it thus may be the case that the first microphone 3 is activated for low frequencies and the second microphone 4 is activated for high frequencies, providing an even better acoustic performance than using only one microphone for the whole range of frequencies.
The present solution advantageously takes the acoustical stability into account when combining the two microphones or selecting one of the two microphones for omni-directional use. Therefore the better microphone will be selected and thus a higher stable gain and less feedback related problems will be achieved for hearing devices with at least two microphones for the omni-directional mode.