Method of administering adhesive to bond orthodontic brackets

Information

  • Patent Grant
  • 12053345
  • Patent Number
    12,053,345
  • Date Filed
    Wednesday, March 9, 2022
    2 years ago
  • Date Issued
    Tuesday, August 6, 2024
    a month ago
Abstract
Methods of administering a quantity of adhesive to bond orthodontic brackets is disclosed herein. The quantity of adhesive to bond a selected bracket to a tooth at a specific location thereon can be calculated based on a known geometry of the selected bracket and a digital model of the patient's teeth. A instruction guide can visually indicate with a graphic the amount of adhesive to dispense from a syringe or other device to bond the selected bracket to the surface of the tooth at a specific location planned in the digital model.
Description
BACKGROUND
Field

The present disclosure relates in some aspects to methods of administering adhesive to bond orthodontic brackets to a patient's teeth.


SUMMARY

It can be difficult to determine a quantity of adhesive that is suitable for bonding an orthodontic bracket to a patient's tooth. If too much adhesive is used, a clinician may need to clean up excess adhesive post bonding, which can waste adhesive and extend the length of a patient's chair time. If too little adhesive is used, a weak bond may be formed between the orthodontic bracket and the patient's tooth, which may result in the orthodontic bracket inadvertently debonding from the tooth. Accordingly, methods, systems, and apparatuses are disclosed herein which determine and/or administer a quantity of adhesive for bonding an orthotic bracket to a patient's tooth.


In some variants, a method of determining a quantity of adhesive to bond an orthodontic bracket to a tooth surface is disclosed herein. The method can include scanning an inside of a mouth of a patient. The method can include creating a digital model of teeth of the patient. The method can include selecting a digital bracket to be placed on a digital tooth of the digital model. The digital bracket having a bonding surface with a known geometry. The method can include positioning the digital bracket at a location on a surface of the digital tooth of the digital model. The method can include determining a quantity of adhesive to bond a bonding surface of a physical orthodontic bracket, corresponding to the bonding surface of the digital bracket, to a location of a surface of a physical tooth, corresponding to the location of the surface of the digital tooth, based at least partially on the known geometry of the bonding surface of the digital bracket and a geometry at the location of the surface of the digital tooth where the digital bracket is positioned.


In some variants, scanning the inside of the mouth of the patient is performed using a mobile device.


In some variants, scanning the inside of the mouth of the patient can include 3D scanning.


In some variants, scanning the inside of the mouth of the patient can include taking 2D images.


In some variants, selecting the digital bracket can include selecting the digital bracket from a plurality of digital brackets having unique characteristics.


In some variants, the digital bracket can be automatically selected based on one or more characteristics of the digital tooth.


In some variants, selecting the digital bracket can include selecting the digital bracket from a plurality of suggested digital brackets.


In some variants, the digital bonding surface and corresponding physical bonding surface can include one or more contours to facilitate improved bonding.


In some variants, the quantity of adhesive to bond the bonding surface of the physical orthodontic bracket to the location of the surface of the physical tooth can be determined by an algorithm.


In some variants, a method of determining a quantity of adhesive to be applied to an orthodontic bracket for bonding is disclosed herein. The method can include dispensing an adhesive from a container. The method can include visually comparing a size of a profile of the dispensed adhesive with an adhesive quantity graphic on an instructional guide. The method can include discontinuing the dispensing of the adhesive from the container when the profile of the dispensed adhesive matches the adhesive quantity graphic on the instructional guide.


In some variants, the method can include transferring the dispensed adhesive to a bonding surface of an orthodontic bracket.


In some variants, the method can include distributing the dispensed adhesive over the contact surface of the orthodontic bracket.


In some variants, distributing the dispensed adhesive over the contact surface of the orthodontic bracket can include using a microbrush.


In some variants, the method can include loading a well of an indirect bonding tray (IDB) tray with the orthodontic bracket.


In some variants, the method can include storing the loaded IDB tray in a light-proof case to prevent the adhesive from curing.


In some variants, the method can include placing the IDB tray on the teeth of the patient to position the orthodontic bracket at a preplanned position on a tooth.


In some variants, the method can include exposing the adhesive to UV light to cure the adhesive.


In some variants, a width of an opening of the container and a width of the adhesive quantity graphic can be the same such that visually comparing the size of the profile of the dispensed adhesive with the adhesive quantity graphic on the instructional guide includes comparing a length of the profile of the dispensed adhesive with a length of the adhesive quantity graphic.


In some variants, the container can be a syringe.


In some variants, the method can include cutting the dispensed adhesive from an end of the container.


In some variants, cutting the dispensed adhesive from the end of the container can include cutting with a composite instrument. The composite instrument can be thin.


In some variants, a kit is disclosed herein. The kit can include a container that can have a cavity that can to hold an adhesive therein. The kit can include an instructional guide that can include an adhesive quantity graphic. The adhesive quantity graphic can be visually compared with a profile of adhesive dispensed from the container to determine a quantity of dispensed adhesive to be applied to an orthodontic bracket for bonding on a location of a tooth of a patient.


In some variants, the container can be a syringe.


In some variants, the cavity can hold the adhesive therein.


In some variants, the kit can include a second container that can house the adhesive to be transferred to the cavity of the container for dispensing.


In some variants, the container can include an opening through which adhesive housed in the cavity can be dispensed.


In some variants, the opening of the container can have a width that is the same as a width of the adhesive quantity graphic such that a length of the profile of adhesive dispensed from the container can be visually compared with a length of the adhesive quantity graphic to determine the quantity of dispensed adhesive to be applied to the orthodontic bracket for bonding.


In some variants, the instructional guide can include a plurality of adhesive quantity graphics and a plurality of tooth identifiers corresponding to respective teeth of a patient. Each of the plurality of adhesive quantity graphics can be, respectively, juxtaposed one of the plurality of tooth identifiers to visually indicate the quantity of dispensed adhesive to be applied to the orthodontic bracket corresponding to the tooth identifier.


In some variants, the kit can include an instrument to cut the dispensed adhesive from the container.


In some variants, the instrument is a composite instrument. The composite instrument can be thin.


In some variants, the kit can include a microbrush to distribute the dispensed adhesive over a contact surface of the orthodontic bracket.


In some variants, the kit can include an indirect bonding tray (IDB) tray.


In some variants, the kit can include a light-proof case that can to delay or prevent curing of the adhesive.


In some variants, the instructional guide can include patient identifying information.


In some variants, the kit can include adhesive.


In some variants, the kit can include one or more archforms.


In some variants, the one or more archforms can be made of a shape memory material and set in a custom nonplanar shape that can move teeth of a patient.


In some variants, the can include a plurality of orthodontic brackets.


In some variants, the plurality of orthodontic brackets can be loaded in an indirect bonding (IDB) tray.


In some variants, the adhesive quantity graphic can be printed on the instructional guide.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings are illustrative embodiments and do not present all possible embodiments of this invention. The illustrated embodiments are intended to illustrate, but not to limit, the scope of protection. Various features of the different disclosed embodiments can be combined to form further embodiments, which are part of this disclosure.



FIG. 1 illustrates a patient's teeth, including the upper and lower dental arches.



FIGS. 2A and 2B illustrate views of an orthodontic bracket.



FIGS. 3A and 3B illustrate views of another orthodontic bracket.



FIG. 4 illustrates an archform.



FIG. 5 illustrates the bracket of FIGS. 2A and 2B with a bracket connector of an archform coupled to the bracket.



FIG. 6 illustrates the bracket of FIGS. 3A and 3B bonded to the surface of a tooth and receiving a bracket connector of an archform.



FIG. 7 illustrates a method of determining a quantity of adhesive to bond an orthodontic bracket to a tooth surface.



FIG. 8 illustrates an instruction guide that graphically represents at scale a quantity of adhesive to bond a selected bracket to a specific tooth.



FIG. 9 illustrates an indirect bonding tray.



FIG. 10 illustrates a method of applying a quantity of adhesive to orthodontic brackets for bonding.





DETAILED DESCRIPTION

Malocclusion of the teeth may be treated using orthodontic brackets and archforms to move the patient's teeth using non-sliding mechanics. For example, scans of a patient's teeth can be taken and a digital model of the patient's teeth can be created, at least in part, from the scans. The teeth of the digital model can be moved from positions of malocclusion (e.g., first positions) to second positions, which may be a final expected alignment of the teeth. Digital brackets can be placed, respectively, on the lingual or buccal surfaces of the teeth in the digital model. In some variants, the digital brackets can be placed before moving the teeth of the digital model from the positions of malocclusion (e.g., first positions) to the second positions.


A physical fixture can be created (e.g., 3D printed, machined, and/or otherwise formed) based on the digital model with the teeth in the second positions and the digital brackets placed. The physical fixture can include retention features (e.g., hooks, slots, locks, holders, etc.) that can retain portions of an archform such as bracket connectors. The retention features can be positioned based on the corresponding positioning of the digital brackets in the digital model with the teeth in the second positions, such that the relative positioning of the retention features to each other is the same as or similar to the relative positioning of the digital brackets to each other in the digital model. In some variants, the physical fixture can be a physical model of the patient's teeth corresponding to the digital model of the patient's teeth in the second positions and the retention features positioned on the teeth of the physical model can be based on the corresponding positioning of the digital brackets in the digital model.


An archform, which may also be referred to as an archwire, can be made of a shape memory material, such as nickel-titanium alloy (e.g., Nitinol). The archform can be cut (e.g., laser, waterjet, etc.) from a sheet of material (e.g., shape memory material). The archform can include bracket connectors that can be coupled to brackets and interproximal segments, such as interproximal loops, that can be configured to move one or more teeth of the patient. When cut from the sheet of material, the archform can have a substantially flat two-dimensional shape. The archform can be deflected and coupled to the physical fixture to assume a custom nonplanar shape. Specifically, the bracket connectors of the archform can be coupled to the retention features of the physical fixture. While retained in the custom nonplanar shape, the archform can be set, which can accomplished via exposure to heat. Setting the archform can set a new default or memorized position for the archform such that the archform is biased toward the memorized custom nonplanar shape when deflected therefrom. Accordingly, if the archform is deflected from the memorized custom nonplanar shape, the archform can exert forces to return the archform back toward the memorized custom nonplanar shape.


An indirect bonding (IDB) tray can be formed based on the digital model. The teeth of the digital model, with the digital brackets disposed thereon, can be returned back to the positions of malocclusion that can reflect the current positions of the patient's teeth. In some variants, the IDB tray can be formed based on the digital model with digital brackets placed on the maloccluded teeth of the digital model prior to movement of the teeth to the second positions. An IDB tray can be 3D printed based on the digital model and/or over molded on a physical model of the patient's teeth. The IDB tray can be sized and shaped to fit over the teeth of the patient. The IDB tray can include wells (e.g., pockets, recesses, etc.) that can house orthodontic brackets therein. The wells can be positioned based on the corresponding positioning of the digital brackets in the digital model.


Orthodontic brackets can be placed in respective wells of the IDB tray with contact surfaces (e.g., bonding surfaces) exposed. An adhesive can be applied to the contact surfaces and the loaded IDB tray can be placed over the teeth of the patient, positioning the orthodontic brackets at locations on the teeth of the patient that correspond to the positioning of the digital brackets on the teeth in the digital model. The orthodontic brackets can bond to the teeth of the patient, which can be facilitated by exposing the adhesive to light (e.g., UV light), heat, low temperatures, and/or chemical(s).


As described herein, it can be difficult to determine a quantity of adhesive that is suitable for bonding an orthodontic bracket to a patient's tooth. If too much adhesive is used, a clinician may need to clean up excess adhesive post bonding, which can waste adhesive and extend the length of a patient's chair time. If too little adhesive is used, a weak bond may be formed between the orthodontic bracket and the patient's tooth, which may result in the orthodontic bracket inadvertently debonding from the tooth.


With the orthodontic brackets bonded to the teeth of the patient, the archform can be deflected from the memorized custom nonplanar shape and coupled to the bonded orthodontic brackets. The bracket connectors of the archform can be coupled, e.g., locked, to the bonded orthodontic brackets such that the archform does not slide with respect to the brackets. As described, the deflected archform can exert forces on the teeth of the patient as the archform exerts forces to move toward the undeflected position (e.g., memorized custom nonplanar shape), which can move the teeth of the patient, using non-sliding mechanics, toward seconds positions that correspond to the second positions of the teeth in the digital model (e.g., final alignment of the teeth).


In some variants, a series of archforms can be sequentially installed in the patient's mouth (e.g., coupled to the brackets) and then replaced to move the patient's teeth from positions of malocclusion to second positions. For example, an initial archform set in the custom nonplanar shape may be used for an initial stage of treatment for initially moving the teeth of the patient toward the second positions. An intermediate archform set in the custom nonplanar shape, which may be stiffer than the initial archform, may be used for an intermediate stage of treatment for moving the teeth of the patient closer toward the second positions. A final archform set in the custom nonplanar shape, which may be stiffer than the intermediate archform, may be used for a final stage of treatment for moving the teeth of the patient closer toward or to the second positions.



FIG. 1 illustrates teeth 100 of a patient, including the upper dental arch 102 and the lower dental arch 104. The human mouth includes a variety of teeth, including incisors 106, canines 108, premolars 110, and molars 112. Each of the foregoing varieties can have different characteristics, sizes, shapes, contours, and/or purposes. For example, incisors 106 are typically smaller than molars and are used to bit into and tear food, while molars 112 include large and relatively flat biting surfaces to crush and grind food. Furthermore, the same variety of teeth can vary depending on whether positioned on the upper dental arch 102 or lower dental arch 104. For example, the upper incisors 106 are typically larger than lower incisors 106. Furthermore, the same tooth can have different characteristics, sizes, shapes, contours, and/or purposes from person to person. Accordingly, in some instances, a variety of brackets with different characteristics, such as size, may be bonded to the surfaces of the teeth of a patient to accommodate different teeth within the patient's mouth.


For example, FIGS. 2A and 2B illustrate a bracket 200, which may be at least used on molars 112. As shown, the bracket 200 can include lateral extensions or wings 208, 209 that extend in the medial-distal direction when the bracket 200 is bonded to a tooth. The relatively larger size of molars 112 may permit the incorporation of lateral extensions 208, 209. The lateral extensions 208, 209 can facilitate increased control (e.g., rotational) of a molar 112. The bracket 200 can include a contact or bonding surface 214 that is configured to be bonded to the surface of a tooth of the patient. The contact surface 214 can include contours or grooves 215, which can increase surface area of the contact surface 214 to improve bonding between the bracket 200 and the surface of the tooth with adhesive. As illustrated, the lateral extensions 208, 209 increase the size of the contact surface 214, which can further increase the strength of the bond between the bracket 200 and the surface of the tooth.


The bracket 200 can include a variety of features that facilitate coupling to an archform. The bracket 200 can include a slot 202, which can be disposed between a retainer 204 and stops 206, 207. The slot 202 can receive a bracket connector of an archform therein such that the archform does not slide with respect to the bracket 200. The retainer 204 and the stops 206, 207 can at least prevent movement of the bracket connector relative to the bracket 200 in the gingival-occlusal direction. The bracket 200 can include a spring 210 (e.g., C-spring) that can lock the bracket connector within the slot 202. The spring 210 can be disposed in the retainer 204 and push the bracket connector against the stops 206, 207 to lock the bracket connector within the slot 202. A gap 212 can space apart the stops 206, 207 and receive a portion of the bracket connector therein such that the stops 206, 207 impede medial-distal movement of the bracket connector relative to the bracket 200.



FIGS. 3A and 3B illustrate a bracket 300, which may be used at least on premolars 110, canines 108, and/or incisors 106. As shown, the bracket 300 omits the lateral extensions illustrated in FIGS. 2A and 2B, which can at least be attributed to the smaller size of the premolars 110, canines 108, and/or incisors 106 compared to the molars 112. Without the lateral extensions, the contact or bonding surface 214 of the bracket 300 is smaller than the contact or bonding surface 214 of the bracket 200. Additionally, the contours 215 in the contact surface 214 of the bracket 300 may be different than the those of the bracket 200. At least these differences in bracket size and characteristics can change the quantity of adhesive used to bond the brackets to the surface of the teeth. For example, a quantity of adhesive used to bond the bracket 200 to a molar 112 may be larger than a quantity of adhesive used to bond the bracket 300 to a premolar 110, canine 108, and/or incisor 106.


The bracket 300 can include similar features to retain a portion of the archform (e.g., the bracket connector). The bracket 300 can at least include a slot 202, retainer 204, stops 206, 207, gap 212 disposed between the stops 206, 207, and/or spring 210 as described in reference to the bracket 200.



FIG. 4 illustrates an archform 400, which can also be referred to as an archwire. The archform 400 can have a rectangular cross-section. The archform 400, as described herein, can be cut from a sheet of material, such as shape memory material (e.g., nickel titanium). The archform 400 can include a plurality of bracket connectors 404 that can be coupled to orthodontic brackets to install the archform 400 in the mouth of a patient. The archform 400 can include a plurality of interproximal segments 402. The interproximal segments 402 can be disposed between adjacent bracket connectors 404. The interproximal segment 402 can include loops. The loops can extend in a gingival direction when the archform 400 is installed in the mouth, which can improve aesthetics and/or facilitate flossing. The loops can open to move adjacent teeth apart from each other. The loops can close to move adjacent teeth closer together.


As shown, the archform 400 is in a two-dimensional shape. As described herein, the archform 400 can be set in a custom nonplanar shape using a fixture based on a digital model of a patient's teeth in second positions, which may be a final alignment of the teeth. The archform 400 can be held in the custom nonplanar shape by the fixture and set by exposure to heat such that the custom nonplanar shape is the default or memorized position of the archform 400. The archform 400 can follow the entire upper or lower dental arch of a patient or a segment thereof.



FIG. 5 illustrates the bracket connector 404 coupled with the bracket 200 such that the bracket connector 404 will not slide with respect to the bracket 200. The bracket connector 404 is disposed within the slot 202 of the bracket 200. The stops 206, 207 and retainer 204 cooperate to retain the bracket connector 404 within the slot and prevent movement of the bracket connector 404 in the occlusal-gingival direction. A portion of the bracket connector 404, e.g., the tongue or tab, can be disposed in the gap 212 between the stops 206, 207 which can help impede the bracket connector 404 from sliding relative to the bracket 200 in the medial-distal direction. As described herein, the spring 210 can push the bracket connector 404 against the stops 206, 207 locking the bracket connector 404 within the bracket 200. In some variants, the bracket connector 404 may be tied to the bracket 200.



FIG. 6 shows the bracket 300 bonded to a tooth surface 502 with a bonding agent or adhesive 500. The adhesive 500 can, in some variants, cure from exposure to air. In some variants, the adhesive 500 can cure from exposure to light, such as UV light. In some variants, the bracket 300 with adhesive applied to the contact surface 214 can be disposed on the tooth surface 502 and, after placement, the adhesive 500 can be exposed to UV light until the adhesive 500 is cured or substantially cured. As shown, the adhesive 500 is extending beyond a periphery of the contact surface 214 which, in some instances, may be removed post bonding. In some variants, an amount of adhesive 500 can be applied to the contact surface 214 for bonding such that the adhesive 500 does not substantially extend beyond a periphery of the contact surface 214 after placement on the tooth surface 502. As shown, the bracket connector 404 is being installed into the slot 202 of the bracket 300.



FIG. 7 illustrates an example method 700 of determining a quantity of adhesive to bond a bracket to a tooth surface. This flow diagram is provided for the purpose of facilitating description of aspects of some embodiments. The diagram does not attempt to illustrate all aspects of the disclosure and should not be considered limiting.


At block 702, a scan (e.g., 3D scans and/or 2D scans) can be taken of the inside of the patient's mouth (e.g., dental arches). The scan can capture data regarding the type, size, shape, contours, surface features, and/or other characteristics of the patient's teeth. The scans can be taken by the patient, caretaker of the patient, and/or clinician. The scan can be performed using a camera and/or sensor of a computer, device connected to a computer, and/or a mobile device, such as a smartphone. In some variants, an application can be used to perform the scans—providing the patient with instructions on how to perform the scan and when a scan is successful. The scan can be performed using the mobile device's built-in camera or via an attachment that operatively connects to the mobile device or computer. In some variants, the scan can be captured using a digital intra-oral scanner and/or a cone-beam computed tomography (CBCT) X-ray scanner. The scanned data can be sent to a manufacturer of orthodontic appliances for processing and/or use.


At block 704, a digital model of the patient's teeth in first positions can be created based on scans of the inside of the patient's mouth. The first positions can correspond to the current positions of the patient's teeth which can be maloccluded positions. The digital model can represent the unique size, shape, contours, surface features, and/or other characteristics of the patient's teeth. The digital model can be displayed to an operator for viewing and/or manipulation. In some variants, the digital model can be automatically generated by software implemented on a computing device using the scans of the inside of the patient's mouth.


At block 706, a digital bracket suitable for bonding on a surface of a tooth can be selected from a variety of digital brackets. As discussed herein, certain types of brackets may be more suitable and/or preferred for bonding on a given tooth but not others. For example, a bracket with lateral extensions may be suitable for bonding on the molars but not on the lower incisors 106 because of differences in size and shape. In some variants, an operator can select a bracket from a variety of brackets for placement on a tooth based on the type of tooth and/or features of the tooth shown in the digital model. In some variants, software implemented on a computing device may suggest one or more brackets from a variety of brackets for placement on a tooth based on the type of tooth and/or features of the relevant tooth. In some variants, software implemented on a computing device may select a bracket from a variety of brackets based on the type of tooth and/or features of the relevant tooth.


At block 708, the selected digital bracket can be digitally placed on the surface of the relevant tooth of the digital model. In some variants, the operator can place the selected digital bracket on the surface (e.g., lingual or buccal surface) of the tooth in the digital model. In some variants, the selected digital bracket can be automatically placed on the surface of the tooth in the digital model. The processes described in reference to block 706 and block 708 can be repeated to select and respectively place a plurality of digital orthodontic brackets on surfaces of the teeth in the digital model, which can include every tooth of the digital model or only some of the teeth of the digital model.


At block 710, a quantity (e.g., volume) of adhesive can be determined to bond a contact surface of a bracket corresponding to the selected digital bracket to a respective surface of a tooth of the patient corresponding to the tooth of the digital model. The determination of the quantity of adhesive can at least be based on the known geometry of the contact surface of the bracket and the geometry of the respective surface of the tooth (using data regarding the type, size, shape, contours, surface features, and/or other characteristics from the scan and/or digital model of the patient's teeth) at the location the bracket will be placed, which can be based on the digital model. As described herein, a variety of orthodontic brackets can be used that have contact surfaces of varying geometry, e.g., sizes, shapes, etc., which can be known by a computing device having one or more processors, memory, instructions, a communication interface, a display, controllers, a user interface, and/or other features requisite to determine the quantity of adhesive to perform a bond. As more orthodontic brackets are developed, data indicative of the geometry of the bracket, including the contact surface, can be stored in the memory of the computing device. In some variants, new orthodontic brackets can be scanned, and the scanned data, indicative of the geometry of the bracket, including the contact surface, can be stored in the memory of the computing device. As described herein, based on the known geometry of the bracket and the scan data and/or digital model of the patient's teeth, the computing device can determine a quantity of adhesive to bond the selected orthodontic bracket at a specific location on the patient's teeth using an algorithm. The quantity of adhesive can change based on the type of bracket selected, type of tooth that the bracket will be bonded to, the unique characteristics of the tooth that the bracket will be bonded to, the location on the tooth that the bracket will be bonded to, the type of adhesive, and/or others.



FIG. 8 illustrates an instruction guide 600 (e.g., graphic, instruction card, etc.) that can be used to instruct a clinician or operator as to the quantity (e.g., volume) of adhesive to apply to a contact surface of a orthodontic bracket to bond a specific bracket on a specific tooth at a specific location. In some variants, the instruction guide 600 can be printed onto a sheet of material, such as paper. In some variants, the instruction guide 600 can be included in a kit that is specific to a patient. The instruction guide 600 can include a patient identifier 606 to pair the instruction guide 600 with the patient. The kit can include a plurality of orthodontic brackets, an IDB tray, one or more archforms, an installation tool, adhesive, primer, and/or other components or features described herein. In some variants, the instruction guide 600 can be displayed on a screen. The instruction guide 600 can include at least two sections for organization, which can include the upper section 602 that corresponds to the teeth of the upper arch of a patient and the lower section 604 that corresponds to the teeth of the lower arch of the patient. All or some of the teeth of the patient can respectively correspond to a tooth identifier 608 (e.g., UR6, UR5, LR5, LR1, LL1, etc.) on the instruction guide 600 that can be positioned in the upper section 602 or lower section 604.


An adhesive quantity graphic 610 can be juxtaposed a corresponding tooth identifier 608. The adhesive quantity graphic 610 can visually indicate, at scale, a quantity (e.g., volume) of adhesive, which can be determined based on method 700, that should be applied to a corresponding orthodontic bracket to be used to bond the bracket at a specific location on a surface of the tooth corresponding to the tooth identifier 608. The adhesive can be stored in a syringe, container, squeeze container, tube, squeeze tube, and/or other device with a dispenser opening of a known size such that the volume of adhesive dispensed from the syringe is a product of the size of the dispenser opening multiplied by the length of the dispensed adhesive. The width of the adhesive quantity graphic 610 can be the same as the width (e.g., diameter) of the opening of the syringe or other device. Accordingly, a computing device can determine a quantity (e.g., volume) of adhesive to bond the selected bracket to the surface of the tooth at a specific location on the tooth, as described herein, and create an adhesive quantity graphic 610 with a width that is the size of the opening of the syringe or other device and a sufficient length to correlate to the determined volume of adhesive to bond the selected bracket to the surface of the tooth at the specific location on the tooth as planned in the digital model. In practice, a clinician can dispense adhesive from the syringe through the dispensing opening until a length (e.g., size) of a side or horizontal profile of the dispensed adhesive visually matches the length of the adhesive quantity graphic 610 to ensure that a suitable amount of adhesive is applied to the contact surface of the selected orthodontic bracket for bonding.


The instruction guide 600 can include a legend 612 that indicates the meaning of certain graphics of the instruction guide 600. The instruction guide 600 can include a direct bond later indicator 618, such as an X mark in an eye-catching color such as green or others, juxtaposed a tooth identifier 608 to indicate that the selected bracket for the corresponding tooth should be direct bonded later rather than bonded up with the use of an IDB tray, as described herein. The instruction guide 600 can include a do-not-treat indicator 616, which can indicate that a tooth is not being treated (e.g., no bracket should be bonded to the tooth). The do-not-bond indicator 616 can include a tooth identifier, which can be greyed out, and a X mark, which can be greyed out. The instruction guide 600 can include struck through tooth identifiers 614, which can indicate that the patient is missing a tooth at that location. The struck through tooth identifiers 614 can be greyed out.



FIG. 9 illustrates an indirect bonding tray (IDB) tray 800, which can be formed based on the digital model of the patient's teeth with digital brackets disposed thereon. The IDB tray 800 can be used to transfer orthodontic brackets to planned positions, based on the digital model, to the surfaces of the patient's teeth. In some variants, the IDB tray 800 can be used to transfer other orthodontic appliances to the patient's teeth, such as bite turbos, power arms, buttons, archforms, and/or others.


The IDB tray 800 can include cavities 802 configured to receive the teeth of the patient such that the IDB tray 800 can be disposed over the teeth of the patient. The IDB tray 800 can include handles to facilitate handling. The IDB tray 800 can be configured to be placed over an entire dental arch of the patient or a segment thereof. The IDB tray 800 can include wells 804 (e.g., pockets, recesses) sized and shaped to respectively receive orthodontic brackets therein with the contact or bonding surface exposed. The wells 804 can be disposed in the surfaces of the IDB tray 800 forming the cavities 802. The IDB tray 800 can be formed by 3D printing, machining, and/or molding a material over a physical model of the patient's teeth, which may include nonfunctional brackets or protuberances to form the wells 804. The IDB tray 800 can correspond to an entire dental arch of a patient or a portion of the dental arch of the patient. The IDB tray 800 can be distributed into separate segments (e.g., two, three, four, etc.). In some variants, the IDB tray 800 can be broken up into separate segments (e.g., two, three, four, etc.). In some variants, the IDB tray 800 can include a single cavity corresponding to a single tooth of the patient.


In use, the wells 804 of the IDB tray 800 can be loaded with orthodontic brackets based on the digital model. The IDB tray 800 can include instructional and/or identifying information (e.g., a tooth identifier) to assist an operator or clinician in placing the correct type of bracket in the corresponding well 804 accordingly to the plan of the digital model. The contact or bonding surfaces of the orthodontic brackets can be exposed with the brackets disposed in the wells 804.


With the IDB tray 800 loaded up with orthodontic brackets, a clinician or operator can apply an adhesive to the contact surfaces of the orthodontic brackets. The clinician can use the instruction guide 600 to determine the amount of adhesive to apply to the contact surfaces of each of the orthodontic brackets to avoid using too much or too little adhesive. With the IDB tray 800 loaded up with orthodontic brackets with adhesive applied, the IDB tray 800 can be placed over the teeth of the patient, placing the orthodontic brackets at the planned positions corresponding to the digital brackets on the digital model. The adhesive can cure, bonding the orthodontic brackets to the patient's teeth at the planned positions. The adhesive can be cured with air, heat, low temperatures, and/or light, such as UV light. The archform can be deflected from the custom nonplanar shape and coupled to the orthodontic brackets such that the deflected archform exerts forces on the teeth, causing the teeth to move towards the second positions planned in the digital model.


In some variants, the IDB tray 800 can hold an archform therein. The archform can be deflected from the custom nonplanar shape when held within the IDB tray 800 and, upon placement of the orthodontic brackets in the wells 804, be coupled to the orthodontic brackets such that the orthodontic brackets can be bonded to the patient's teeth with the archform. In some variants, the brackets can be bonded to the tooth and the IDB tray 800 can, after bonding, be used to couple the archform to the orthodontic brackets. In some variants, the IDB tray 800 is soluble in water and/or another fluid, enabling the IDB tray 800 to be dissolved after placing the orthodontic brackets and/or archform on the patient's teeth. In some variants, the IDB tray 800 can transfer orthodontic brackets and an archform to the teeth of the patient at the same time.



FIG. 10 illustrates a method 900 of applying a quantity of adhesive to orthodontic brackets to bond at locations on surfaces of a patient's teeth. This flow diagram is provided for the purpose of facilitating description of aspects of some embodiments. The diagram does not attempt to illustrate all aspects of the disclosure and should not be considered limiting.


At block 902, an IDB tray can be loaded with orthodontic brackets. As described herein, the selected orthodontic brackets can be placed in wells of the IDB tray based on the digital model.


At block 904, adhesive can be dispensed from a syringe, container, squeeze container, tube, squeeze tube, and/or other device such that a side or horizontal profile of the dispensed adhesive matches a size of an adhesive quantity graphic 610 corresponding to a tooth identifier 608 on the instruction guide 600. As described herein, an opening of the syringe or other device can be the same as the width of the adhesive quantity graphic 610 such that the length (e.g., longitudinal length) of the profile of the dispensed adhesive can be compared with the length (e.g., longitudinal length) of the adhesive quantity graphic 610 to verify that a suitable quantity of adhesive has been dispensed for a specific bracket.


At block 906, the dispensed adhesive can be separated from the syringe or other device. In some variants, a thin, composite instrument can be used to cleanly cut the dispensed adhesive at a tip of the syringe or other device.


At block 908, the dispensed adhesive can be transferred to the contact surface of the orthodontic bracket loaded in the IDB tray 800 that is to be placed on a tooth corresponding to the tooth identifier 608 referenced at block 904.


At block 910, the dispensed adhesive can be distributed over the contact surface of the bracket. In some variants, a microbrush can be used to distribute or pad the dispensed adhesive over the contact surface of the bracket for even coverage. The processed described in reference to blocks 904 through 910 can be repeated until the plurality of orthodontic brackets loaded in the IDB tray 800 have adhesive applied therein and are ready for bonding.


At block 912, the IDB tray 800 loaded with orthodontic brackets with adhesive can, optionally, be stored in a light-proof or airtight case that can prevent the curing or at least slow the curing of the adhesive. This can enable an IDB tray 800 to be prepared for bonding before the arrival of a patient, which can decrease the duration of a patient's appointment. In some variants, this can enable the IDB tray 800 to be shipped to a patient or clinic with brackets prepasted with adhesive for more efficient treatment of patients. As described herein, the loaded IDB tray 800 can be positioned over the teeth of the patient to bond the orthodontic brackets at locations. The adhesive can be cured as described herein, and an archform can be deflected and coupled to the bonded brackets to apply forces to the patient's teeth, moving the patient's teeth toward second positions planned in the digital model. As described herein, in some variants, an IDB tray 800 can be used to transfer the archform to couple to the patient's teeth. In some variants, the IDB tray 800 can transfer the archform and brackets to the patient's teeth at the same time.


Reference is made herein to orthodontic appliances and brackets that move teeth using non-sliding mechanics. However, this disclosure should not be limited to non-sliding mechanics. The methods, apparatuses, and/or systems disclosed herein can be applicable to configurations using sliding mechanics (e.g., an archwire that slides relative to brackets). The methods, apparatuses, and/or systems disclosed herein can be applicable to at least any orthodontic treatment plan that involves coupling an archform to the teeth of the patient and/or bonding and/or placing orthodontic brackets on the teeth of the patient. For example, orthodontic brackets formed and cured from an adhesive, as described herein, can be bonded to a patient's teeth and an archform can be coupled thereto that is configured to slide relative to the cured orthodontic bracket to move teeth of the patient. In some variants, bite turbos, power arms, hooks, and/or other features can be formed, cured, and bonded to the patient's teeth according to a treatment plan.


It is intended that the scope of this present invention herein disclosed should not be limited by the particular disclosed embodiments described above. This invention is susceptible to various modifications and alternative forms, and specific examples have been shown in the drawings and are herein described in detail. This invention is not limited to the detailed forms or methods disclosed, but rather covers all equivalents, modifications, and alternatives falling within the scope and spirit of the various embodiments described and the appended claims. Various features of the orthodontic brackets and archforms described herein can be combined to form further embodiments, which are part of this disclosure. The orthodontic brackets described herein can be bonded to a patient's teeth and the archforms described herein can be deflected and coupled thereto as part of a treatment plan. The archforms can move toward a default position and move the patient's teeth from a first position to a second position. The archforms described herein can be installed in sequence to move the patient's teeth. The orthodontic brackets described herein can be bonded to the teeth of the patient in various orientations, which can include orienting the orthodontic bracket in a first gingival-occlusal orientation and reorienting the orthodontic bracket one hundred and eighty degrees to a second gingival-occlusal orientation (e.g., rotating the orthodontic bracket one hundred and eighty degrees).


Methods of using the orthodontic brackets and/or archforms (including device(s), apparatus(es), assembly(ies), structure(s) or the like) are included herein; the methods of use can include using or assembling any one or more of the features disclosed herein to achieve functions and/or features of the system(s) as discussed in this disclosure. Methods of manufacturing the foregoing system(s) are included; the methods of manufacture can include providing, making, connecting, assembling, and/or installing any one or more of the features of the system(s) disclosed herein to achieve functions and/or features of the system(s) as discussed in this disclosure.


Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. Therefore, it should be understood at this time that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein. It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “tying a tie onto an orthodontic bracket” includes “instructing the tying of a tie onto an orthodontic bracket.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.

Claims
  • 1. A method comprising: determining, by way of a digital model, a custom quantity of adhesive to bond an orthodontic bracket to a physical tooth at least based on a geometry of a bonding surface of the orthodontic bracket and a geometry of a surface of a digital tooth in the digital model representative of the physical tooth at a location corresponding to a digitally planned placement of the orthodontic bracket; dispensing an adhesive from an opening of a container onto an adhesive quantity graphic on an instructional guide; visually comparing a length of a profile of the dispensed adhesive with a length of the adhesive quantity graphic on the instructional guide, wherein the length of the adhesive quantity graphic is based on the determined custom quantity of adhesive, and wherein a width of the opening of the container and a width of the adhesive quantity graphic are the same; and discontinuing the dispensing of the adhesive from the container when the length of the profile of the dispensed adhesive matches the length of the adhesive quantity graphic on the instructional guide.
  • 2. The method of claim 1, further comprising transferring the dispensed adhesive to the bonding surface of the orthodontic bracket.
  • 3. The method of claim 2, further comprising distributing the dispensed adhesive over the bonding surface of the orthodontic bracket.
  • 4. The method of claim 2, further comprising loading a well of an indirect bonding (IDB) tray with the orthodontic bracket.
  • 5. The method of claim 4, further comprising storing the loaded IDB tray in a light-proof case to prevent the adhesive from curing.
  • 6. The method of claim 4, further comprising placing the loaded IDB tray on the physical tooth to position the orthodontic bracket at the digitally planned placement.
  • 7. The method of claim 6, further comprising exposing the adhesive to UV light to cure the adhesive.
  • 8. The method of claim 1, wherein the container is a syringe.
  • 9. The method of claim 1, further comprising cutting the dispensed adhesive from an end of the container.
  • 10. A kit comprising: a container comprising an opening providing access into a cavity configured to hold an adhesive therein; andan instructional guide comprising an adhesive quantity graphic, wherein a length of the adhesive quantity graphic is configured to be visually compared with a length of a profile of adhesive dispensed from the container through the opening onto the adhesive quantity graphic to determine a quantity of dispensed adhesive to be applied to an orthodontic bracket for bonding on a location of a physical tooth of a patient, wherein a width of the opening of the container and a width of the adhesive quantity graphic are the same, and wherein the length of the adhesive quantity graphic corresponds to a custom quantity of adhesive determined, by way of a digital model, to bond the orthodontic bracket to the physical tooth at least based on a geometry of a bonding surface of the orthodontic bracket and a geometry of a surface of a digital tooth in the digital model representative of the physical tooth at a location corresponding to a digitally planned placement of the orthodontic bracket.
  • 11. The kit of claim 10, wherein the adhesive quantity graphic is one of a plurality of adhesive quantity graphics, and the instructional guide further comprising a plurality of tooth identifiers corresponding to respective teeth of the patient, each of the plurality of adhesive quantity graphics being respectively juxtaposed one of the plurality of tooth identifiers to visually indicate a quantity of dispensed adhesive to be applied to the orthodontic bracket corresponding to the tooth identifier.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/240,627, filed Sep. 3, 2021, which is incorporated herein by reference in its entirety. Any and all applications, if any, for which a foreign or domestic priority claim is identified in the Application Data Sheet of the present application is hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (818)
Number Name Date Kind
1005131 Angle et al. Oct 1911 A
1108493 Federspiel Aug 1914 A
1307382 Stanton Jun 1919 A
1323141 Young Nov 1919 A
1429749 Maeulen et al. Sep 1922 A
1638006 Aderer Feb 1926 A
2257069 Peak Sep 1941 A
2495692 Brusse Jan 1950 A
2524763 Brusse Oct 1950 A
2582230 Brusse Jan 1952 A
3256602 Broussard Jun 1966 A
3262207 Kesling Jul 1966 A
3374542 Moylan, Jr. Mar 1968 A
3464113 Silverman et al. Sep 1969 A
3593421 Brader Jul 1971 A
3600808 Reeve Aug 1971 A
3683502 Wallshein Aug 1972 A
3691635 Wallshein Sep 1972 A
3762050 Dal Pont Oct 1973 A
3765091 Northcutt Oct 1973 A
3878610 Coscina Apr 1975 A
3936938 Northcutt Feb 1976 A
3946488 Miller et al. Mar 1976 A
3949477 Cohen et al. Apr 1976 A
3975823 Sosnay Aug 1976 A
4103423 Kessel Aug 1978 A
4171568 Forster Oct 1979 A
4192070 Lemchen et al. Mar 1980 A
4193195 Merkel et al. Mar 1980 A
4197643 Burstone et al. Apr 1980 A
4268250 Reeve May 1981 A
4330273 Kesling May 1982 A
4354833 Fujita Oct 1982 A
4354834 Wilson Oct 1982 A
4382781 Grossman May 1983 A
4385890 Klein May 1983 A
4412819 Cannon Nov 1983 A
4424033 Wool Jan 1984 A
4436510 Klein Mar 1984 A
4479779 Wool Oct 1984 A
4483674 Schütz Nov 1984 A
4490112 Tanaka et al. Dec 1984 A
4501554 Hickham Feb 1985 A
4516938 Hall May 1985 A
4533320 Piekarsky Aug 1985 A
4561844 Bates Dec 1985 A
4580976 O'Meara Apr 1986 A
4582487 Creekmore Apr 1986 A
4585414 Kottermann Apr 1986 A
4592725 Goshgarian Jun 1986 A
4634662 Rosenberg Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4659310 Kottermann Apr 1987 A
4664626 Kesling May 1987 A
4674978 Acevedo Jun 1987 A
4676747 Kesling Jun 1987 A
4725229 Miller Feb 1988 A
4797093 Bergersen Jan 1989 A
4797095 Armstrong et al. Jan 1989 A
4838787 Lerner Jun 1989 A
4842514 Kesling Jun 1989 A
4872449 Beeuwkes Oct 1989 A
4881896 Bergersen Nov 1989 A
4892479 McKenna Jan 1990 A
4897035 Green Jan 1990 A
4900251 Andreasen Feb 1990 A
4978323 Freedman Dec 1990 A
5011405 Lemchen Apr 1991 A
5017133 Miura May 1991 A
5044947 Sachdeva et al. Sep 1991 A
5055039 Abbatte et al. Oct 1991 A
5092768 Korn Mar 1992 A
5114339 Guis May 1992 A
5123838 Cannon Jun 1992 A
5127828 Suyama Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5154606 Wildman Oct 1992 A
5174754 Meritt Dec 1992 A
5176514 Viazis Jan 1993 A
5176618 Freedman Jan 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5248257 Cannon Sep 1993 A
5259760 Orikasa Nov 1993 A
5312247 Sachdeva et al. May 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko Nov 1994 A
5380197 Hanson Jan 1995 A
5399087 Arndt Mar 1995 A
5431562 Andreiko Jul 1995 A
5447432 Andreiko Sep 1995 A
5454717 Andreiko Oct 1995 A
RE35169 Lemchen et al. Mar 1996 E
5516284 Wildman May 1996 A
5556277 Yawata et al. Sep 1996 A
5624258 Wool Apr 1997 A
5630715 Voudouris May 1997 A
5683243 Andreiko Nov 1997 A
5683245 Sachdeva et al. Nov 1997 A
5722827 Allesee Mar 1998 A
5727941 Kesling Mar 1998 A
5816800 Brehm Oct 1998 A
5820370 Brosius Oct 1998 A
5863198 Doyle Jan 1999 A
5890893 Heiser Apr 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5993208 Jonjic Nov 1999 A
6015289 Andreiko Jan 2000 A
6036489 Brosius Mar 2000 A
6042374 Farzin-Nia et al. Mar 2000 A
6086364 Brunson Jul 2000 A
6089861 Kelly Jul 2000 A
6095809 Kelly et al. Aug 2000 A
6099304 Carter Aug 2000 A
6123544 Cleary Sep 2000 A
6183250 Kanno et al. Feb 2001 B1
6190166 Sasakura Feb 2001 B1
6196839 Ross Mar 2001 B1
6213767 Dixon Apr 2001 B1
6217325 Chishti et al. Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6244861 Andreiko Jun 2001 B1
6250918 Sachdeva et al. Jun 2001 B1
6258118 Baum et al. Jul 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6318994 Chishti et al. Nov 2001 B1
6318995 Sachdeva et al. Nov 2001 B1
6334853 Kopelman et al. Jan 2002 B1
6350120 Sachdeva et al. Feb 2002 B1
6358045 Farzin-Nia et al. Mar 2002 B1
6371761 Cheang et al. Apr 2002 B1
6375458 Moorleghem et al. Apr 2002 B1
6394801 Chishti et al. May 2002 B2
6398548 Muhammad et al. Jun 2002 B1
6413084 Rubbert et al. Jun 2002 B1
6431870 Sachdeva Aug 2002 B1
6450807 Chishti et al. Sep 2002 B1
6464495 Voudouris Oct 2002 B1
6464496 Sachdeva et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6512994 Sachdeva Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6532299 Sachdeva et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6554613 Sachdeva et al. Apr 2003 B1
6572693 Wu et al. Jun 2003 B1
6582226 Jordan et al. Jun 2003 B2
6587828 Sachdeva Jul 2003 B1
6595774 Risse Jul 2003 B1
6554611 Chishti et al. Aug 2003 B2
6602070 Miller et al. Aug 2003 B2
6612143 Butscher et al. Sep 2003 B1
6616444 Andreiko Sep 2003 B2
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6632089 Rubbert Oct 2003 B2
6648640 Rubbert Nov 2003 B2
6663385 Tepper Dec 2003 B2
6679700 McGann Jan 2004 B2
6682344 Stockstill Jan 2004 B1
6685469 Chishti et al. Feb 2004 B2
6685470 Chishti et al. Feb 2004 B2
6688885 Sachdeva et al. Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6702575 Hilliard Mar 2004 B2
6705863 Phan et al. Mar 2004 B2
6722878 Graham Apr 2004 B2
6722880 Chishti et al. Apr 2004 B2
6728423 Rubbert et al. Apr 2004 B1
6729876 Chishti et al. May 2004 B2
6732558 Butscher et al. May 2004 B2
6733285 Puttler et al. May 2004 B2
6733287 Wilkerson May 2004 B2
6733288 Vallittu et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6738508 Rubbert et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744914 Rubbert et al. Jun 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6746241 Townsend-Hansen Jun 2004 B2
6755064 Butscher Jun 2004 B2
6771809 Rubbert et al. Aug 2004 B1
6776614 Wiechmann Aug 2004 B2
6830450 Knopp et al. Dec 2004 B2
6845175 Kopelman et al. Jan 2005 B2
6846179 Chapouland Jan 2005 B2
6851949 Sachdeva et al. Feb 2005 B1
6860132 Butscher Mar 2005 B2
6893257 Kelly May 2005 B2
6928733 Rubbert et al. Aug 2005 B2
6948931 Chishti et al. Sep 2005 B2
6960079 Brennan et al. Nov 2005 B2
6971873 Sachdeva Dec 2005 B2
6976627 Culp et al. Dec 2005 B1
6988889 Abels Jan 2006 B2
7008221 McGann Mar 2006 B2
7013191 Rubbert Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7029275 Rubbert Apr 2006 B2
7033171 Wilkerson Apr 2006 B2
7037107 Yamamoto May 2006 B2
7056115 Phan et al. Jun 2006 B2
7063531 Maijer et al. Jun 2006 B2
7068836 Rubbert et al. Jun 2006 B1
7076980 Butscher Jul 2006 B2
7077646 Hilliard Jul 2006 B2
7077647 Choi et al. Jul 2006 B2
7080979 Rubbert et al. Jul 2006 B2
7092107 Babayoff et al. Aug 2006 B2
7094053 Andreiko Aug 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7125248 Phan et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156661 Choi et al. Jan 2007 B2
7160110 Imgrund et al. Jan 2007 B2
7168950 Cinader, Jr. et al. Jan 2007 B2
7172417 Sporbert et al. Feb 2007 B2
7175428 Nicholson Feb 2007 B2
7186115 Goldberg et al. Mar 2007 B2
7188421 Cleary et al. Mar 2007 B2
7201574 Wiley Apr 2007 B1
7204690 Hanson et al. Apr 2007 B2
7214056 Stockstill May 2007 B2
7229282 Andreiko Jun 2007 B2
7234934 Rosenberg Jun 2007 B2
7234936 Lai Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7240528 Weise et al. Jul 2007 B2
7244121 Brosius Jul 2007 B2
7245977 Simkins Jul 2007 B1
7252506 Lai Aug 2007 B2
7267545 Oda Sep 2007 B2
7283891 Butscher Oct 2007 B2
7296996 Sachdeva Nov 2007 B2
7335021 Nikodem Feb 2008 B2
7347688 Kopelman et al. Mar 2008 B2
7354268 Raby et al. Apr 2008 B2
7357634 Knopp Apr 2008 B2
7361017 Sachdeva Apr 2008 B2
7364428 Cinader, Jr. et al. Apr 2008 B2
7404714 Cleary et al. Jul 2008 B2
7410357 Cleary et al. Aug 2008 B2
7416408 Farzin-Nia et al. Aug 2008 B2
7442041 Imgrund et al. Oct 2008 B2
7452205 Cinader, Jr. et al. Nov 2008 B2
7458812 Sporbert et al. Dec 2008 B2
7469783 Rose, Sr. Dec 2008 B2
7471821 Rubbert et al. Dec 2008 B2
7473097 Raby et al. Jan 2009 B2
7556496 Cinader, Jr. et al. Jul 2009 B2
7578673 Wen et al. Aug 2009 B2
7578674 Chishti et al. Aug 2009 B2
7585172 Rubbert Sep 2009 B2
7590462 Rubbert Sep 2009 B2
7604181 Culp et al. Oct 2009 B2
7621743 Bathen Nov 2009 B2
7641473 Sporbert Jan 2010 B2
7674110 Oda Mar 2010 B2
7677887 Nicholson Mar 2010 B2
7699606 Sachdeva et al. Apr 2010 B2
7704072 Damon Apr 2010 B2
7717708 Sachdeva May 2010 B2
7722354 Dumas May 2010 B1
7726470 Cinader, Jr. et al. Jun 2010 B2
7726968 Raby et al. Jun 2010 B2
7751925 Rubbert Jul 2010 B2
7762815 Cinader, Jr. et al. Jul 2010 B2
7811087 Wiechmann Oct 2010 B2
7837464 Marshall Nov 2010 B2
7837466 Griffith et al. Nov 2010 B2
7837467 Butscher Nov 2010 B2
7845938 Kim et al. Dec 2010 B2
7850451 Wiechmann Dec 2010 B2
7871267 Griffith et al. Jan 2011 B2
7878806 Lemchen Feb 2011 B2
7909603 Oda Mar 2011 B2
D636084 Troester Apr 2011 S
D636085 Troester Apr 2011 S
7950131 Hilliard May 2011 B2
7993133 Cinader, Jr. et al. Aug 2011 B2
8021146 Cinader, Jr. et al. Sep 2011 B2
8029275 Kesling Oct 2011 B2
8033824 Oda et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8047034 Butscher Nov 2011 B2
8057226 Wiechmann Nov 2011 B2
8070487 Chishti et al. Dec 2011 B2
8082769 Butscher Dec 2011 B2
8092215 Stone-collonge et al. Jan 2012 B2
8102538 Babayoff Jan 2012 B2
8113828 Greenfield Feb 2012 B1
8113829 Sachdeva Feb 2012 B2
8114327 Cinader, Jr. et al. Feb 2012 B2
8121718 Rubbert Feb 2012 B2
8142187 Sporbert Mar 2012 B2
8152519 Dumas et al. Apr 2012 B1
8177551 Sachdeva May 2012 B2
8192196 Singh Jun 2012 B2
8192197 Sporbert Jun 2012 B2
8194067 Raby Jun 2012 B2
8220195 Maijer et al. Jul 2012 B2
8251699 Reising et al. Aug 2012 B2
8266940 Riemeir et al. Sep 2012 B2
8297970 Kanomi Oct 2012 B2
8308478 Primus et al. Nov 2012 B2
8313327 Won Nov 2012 B1
8359115 Kopelman et al. Jan 2013 B2
8363228 Babayoff Jan 2013 B2
8366440 Bathen Feb 2013 B2
8376739 Dupray Feb 2013 B2
8382917 Johnson Feb 2013 B2
8393896 Oda Mar 2013 B2
8417366 Getto Apr 2013 B2
8439671 Cinader, Jr. May 2013 B2
8439672 Matov et al. May 2013 B2
8451456 Babayoff May 2013 B2
8454364 Taub et al. Jun 2013 B2
8459988 Dumas Jun 2013 B2
8465279 Bathen Jun 2013 B2
8469704 Oda et al. Jun 2013 B2
8479393 Abels et al. Jul 2013 B2
8485816 Macchi Jul 2013 B2
8491306 Raby et al. Jul 2013 B2
D688803 Gilbert Aug 2013 S
8500445 Borri Aug 2013 B2
8517727 Raby et al. Aug 2013 B2
8545221 Sonte-collenge et al. Oct 2013 B2
8550814 Collins Oct 2013 B1
8562337 Kuo et al. Oct 2013 B2
8573972 Matov et al. Nov 2013 B2
8591225 Wu et al. Nov 2013 B2
8591226 Griffith et al. Nov 2013 B2
8636505 Fornoff Jan 2014 B2
8638447 Babayoff et al. Jan 2014 B2
8638448 Babayoff et al. Jan 2014 B2
8675207 Babayoff Mar 2014 B2
8678818 Dupray Mar 2014 B2
8690568 Chapouland Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8714972 Eichenberg May 2014 B2
8734149 Phan et al. May 2014 B2
8734690 Komori May 2014 B2
8780106 Chishti et al. Jul 2014 B2
8805048 Batesole Aug 2014 B2
8805563 Kopelman et al. Aug 2014 B2
8807995 Kabbani et al. Aug 2014 B2
8827697 Cinader, Jr. et al. Sep 2014 B2
8845330 Taub et al. Sep 2014 B2
8871132 Abels et al. Oct 2014 B2
8931171 Rosenberg Jan 2015 B2
8932054 Rosenberg Jan 2015 B1
8936464 Kopelman Jan 2015 B2
8961172 Dupray Feb 2015 B2
8968365 Aschmann et al. Mar 2015 B2
8979528 Macchi Mar 2015 B2
8986004 Dumas Mar 2015 B2
8992215 Chapouland Mar 2015 B2
8998608 Imgrund et al. Apr 2015 B2
9022781 Kuo et al. May 2015 B2
D731659 Singh Jun 2015 S
9066775 Bukhary Jun 2015 B2
9089386 Hagelganz Jul 2015 B2
D736945 Singh Aug 2015 S
9101433 Babayoff Aug 2015 B2
9119689 Kabbani Sep 2015 B2
9127338 Johnson Sep 2015 B2
9144473 Aldo Sep 2015 B2
9161823 Morton et al. Oct 2015 B2
9204942 Phan et al. Dec 2015 B2
9299192 Kopelman Mar 2016 B2
9301815 Dumas Apr 2016 B2
9329675 Ojelund et al. May 2016 B2
9339352 Cinader et al. May 2016 B2
9387055 Cinader, Jr. et al. Jul 2016 B2
9402695 Curiel et al. Aug 2016 B2
9427291 Khoshnevis et al. Aug 2016 B2
9427916 Taub et al. Aug 2016 B2
9433477 Borovinskih et al. Sep 2016 B2
9439737 Gonzales et al. Sep 2016 B2
9451873 Kopelman et al. Sep 2016 B1
9492246 Lin Nov 2016 B2
9498302 Patel Nov 2016 B1
D774193 Makmel et al. Dec 2016 S
9510757 Kopelman et al. Dec 2016 B2
9517112 Hagelganz et al. Dec 2016 B2
9529970 Andreiko Dec 2016 B2
9532854 Cinader et al. Jan 2017 B2
9539064 Abels et al. Jan 2017 B2
9554875 Gualano Jan 2017 B2
9566132 Stone-collonge et al. Feb 2017 B2
9566134 Hagelganz et al. Feb 2017 B2
9585733 Voudouris Mar 2017 B2
9585734 Lai et al. Mar 2017 B2
9597165 Kopelman Mar 2017 B2
9610628 Riemeier Apr 2017 B2
9615901 Babyoff et al. Apr 2017 B2
9622834 Chapouland Apr 2017 B2
9622835 See et al. Apr 2017 B2
9629551 Fisker et al. Apr 2017 B2
9629694 Chun et al. Apr 2017 B2
9642678 Kuo May 2017 B2
9675435 Karazivan et al. Jun 2017 B2
9707056 Machata et al. Jul 2017 B2
9763750 Kim et al. Sep 2017 B2
9788917 Mah Oct 2017 B2
9814543 Huang et al. Nov 2017 B2
9844420 Cheang Dec 2017 B2
9848958 Matov et al. Dec 2017 B2
9867678 Macchi Jan 2018 B2
9867680 Damon Jan 2018 B2
9872741 Gualano Jan 2018 B2
9877804 Chester Jan 2018 B2
9877805 Abels et al. Jan 2018 B2
9925020 Jo Mar 2018 B2
9937018 Martz et al. Apr 2018 B2
9937020 Choi Apr 2018 B2
9956058 Kopelman May 2018 B2
9962244 Esbech et al. May 2018 B2
9975294 Taub et al. May 2018 B2
9987105 Dupray Jun 2018 B2
10028804 Schulhof et al. Jul 2018 B2
10045834 Gualano Aug 2018 B2
10052177 Andreiko Aug 2018 B2
10058400 Abels et al. Aug 2018 B2
10058401 Tan Aug 2018 B2
10064706 Dickerson Sep 2018 B2
10070943 Fornoff Sep 2018 B2
10076780 Riemeier et al. Sep 2018 B2
10098709 Kitching et al. Oct 2018 B1
10130987 Riemeier et al. Nov 2018 B2
10136966 Reybrouck et al. Nov 2018 B2
10149738 Lee Dec 2018 B2
10179035 Shivapuja et al. Jan 2019 B2
10179036 Lee Jan 2019 B2
10219877 Khoshnevis et al. Mar 2019 B2
10226312 Khoshnevis et al. Mar 2019 B2
10238476 Karazivan et al. Mar 2019 B2
10241499 Griffin Mar 2019 B1
10278791 Schumacher May 2019 B2
10278792 Wool May 2019 B2
10278793 Gonzalez et al. May 2019 B2
10292789 Martz et al. May 2019 B2
10307221 Cinader, Jr. Jun 2019 B2
10314673 Schulhof et al. Jun 2019 B2
10327867 Nikolskiy et al. Jun 2019 B2
10342640 Cassalia Jul 2019 B2
10368961 Paehl et al. Aug 2019 B2
10383707 Roein Peikar et al. Aug 2019 B2
D859663 Cetta et al. Sep 2019 S
10413386 Moon et al. Sep 2019 B2
10426575 Raslambekov Oct 2019 B1
10456228 Karazivan et al. Oct 2019 B2
10478271 Patel Nov 2019 B2
10485638 Salah Nov 2019 B2
10492889 Kim et al. Dec 2019 B2
10492890 Cinader, Jr. et al. Dec 2019 B2
10555792 Kopelman et al. Feb 2020 B2
10588717 Chun et al. Mar 2020 B2
10595966 Carrier, Jr. et al. Mar 2020 B2
10603137 Alauddin et al. Mar 2020 B2
10636522 Katzman et al. Apr 2020 B2
10639130 Blees et al. May 2020 B2
10639134 Shangjani et al. May 2020 B2
10717208 Raslambekov et al. Jul 2020 B1
10754325 Griffin, III Aug 2020 B1
10758323 Kopelman Sep 2020 B2
10772706 Schumacher Sep 2020 B2
10806376 Lotan et al. Oct 2020 B2
10809697 Grapsas Oct 2020 B2
10828133 Tong et al. Nov 2020 B2
10849723 Yancey et al. Dec 2020 B1
10869738 Witte et al. Dec 2020 B2
10881488 Kopelman Jan 2021 B2
10881489 Tong et al. Jan 2021 B2
10905527 Roein Peikar et al. Feb 2021 B2
10932887 Hung Mar 2021 B2
10935958 Sirovskiy et al. Mar 2021 B2
10952820 Song et al. Mar 2021 B2
10980614 Roein Peikar et al. Apr 2021 B2
10984549 Goncharov et al. Apr 2021 B2
10993782 Raslambekov May 2021 B1
10993785 Roein Peikar et al. May 2021 B2
10996813 Makarenkova et al. May 2021 B2
11020205 Li et al. Jun 2021 B2
11045281 Tsai et al. Jun 2021 B2
11045295 Karazivan et al. Jun 2021 B2
11058517 Tong et al. Jul 2021 B2
11058518 Roein Peikar et al. Jul 2021 B2
11058520 Khoshnevis et al. Jul 2021 B2
11072021 Riemeier et al. Jul 2021 B2
11083411 Yancey et al. Aug 2021 B2
11083546 Cassalia Aug 2021 B2
11103330 Webber et al. Aug 2021 B2
11129696 Khoshnevis et al. Sep 2021 B2
11147652 Mason et al. Oct 2021 B2
11154382 Kopelman et al. Oct 2021 B2
11229505 Schumacher et al. Jan 2022 B2
11234794 Pokotilov et al. Feb 2022 B2
11304781 Chun et al. Apr 2022 B2
11317994 Peikar et al. May 2022 B2
11317995 Peikar et al. May 2022 B2
11324572 Peikar et al. May 2022 B2
11331165 Owen May 2022 B2
11337486 Oda et al. May 2022 B2
11357598 Cramer Jun 2022 B2
11382720 Kopelman et al. Jul 2022 B2
11413117 Griffin, III et al. Aug 2022 B2
11419701 Shanjani et al. Aug 2022 B2
11433658 Friedrich et al. Sep 2022 B2
11435142 Hauptmann Sep 2022 B2
11446117 Paehl et al. Sep 2022 B2
11446219 Kohler et al. Sep 2022 B2
11464604 Makarenkova et al. Oct 2022 B2
11471254 Owen Oct 2022 B2
11471255 Cinader, Jr. et al. Oct 2022 B2
11478335 Lai et al. Oct 2022 B2
11478337 Griffin, III et al. Oct 2022 B2
11490995 Wratten, Jr. et al. Nov 2022 B2
11500354 Griffin, III et al. Nov 2022 B2
11504212 Wratten, Jr. et al. Nov 2022 B2
11510757 Khoshnevis et al. Nov 2022 B2
11510758 Khoshnevis et al. Nov 2022 B2
D972732 Villanueva Dec 2022 S
11517405 Khoshnevis et al. Dec 2022 B2
11612458 Tong et al. Mar 2023 B1
11612459 Tong et al. Mar 2023 B2
11696816 Gardner Jul 2023 B2
20010055741 Dixon Dec 2001 A1
20020006597 Andreiko et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020081546 Tricca et al. Jun 2002 A1
20020098460 Farzin-Nia Jul 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030049582 Abels et al. Mar 2003 A1
20030070468 Butscher et al. Apr 2003 A1
20030180689 Arx et al. Sep 2003 A1
20030194677 Sachdeva et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20040048222 Forster et al. Mar 2004 A1
20040072120 Lauren Apr 2004 A1
20040083611 Rubbert et al. May 2004 A1
20040166459 Voudouris Aug 2004 A1
20040168752 Julien Sep 2004 A1
20040199177 Kim Oct 2004 A1
20040219471 Cleary et al. Nov 2004 A1
20050043837 Rubbert et al. Feb 2005 A1
20050074716 Cleary Apr 2005 A1
20050106529 Abolfathi et al. May 2005 A1
20050181332 Sernetz Aug 2005 A1
20050191592 Farzin-Nia et al. Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050244780 Abels et al. Nov 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244790 Kuperman Nov 2005 A1
20060006092 DuBos Jan 2006 A1
20060014116 Maijer et al. Jan 2006 A1
20060068354 Jeckel Mar 2006 A1
20060127834 Szwajkowski et al. Jun 2006 A1
20060175209 Sabilla Aug 2006 A1
20060223021 Cinader et al. Oct 2006 A1
20060223031 Cinader, Jr. et al. Oct 2006 A1
20060257813 Highland Nov 2006 A1
20060257821 Cinader, Jr. et al. Nov 2006 A1
20070015103 Sorel Jan 2007 A1
20070031773 Scuzzo Feb 2007 A1
20070031775 Andreiko Feb 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070107745 Kiyomoto May 2007 A1
20070111154 Sampermans May 2007 A1
20070118215 Moaddeb May 2007 A1
20070134611 Nicholson Jun 2007 A1
20070134612 Contencin Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070154859 Hilliard Jul 2007 A1
20070172788 Hill, II et al. Jul 2007 A1
20070190478 Goldberg et al. Aug 2007 A1
20070231768 Hutchinson Oct 2007 A1
20070235051 Robinson Oct 2007 A1
20070287121 Cinader et al. Dec 2007 A1
20080032250 Kopelman et al. Feb 2008 A1
20080057460 Hicks Mar 2008 A1
20080063995 Farzin-Nia et al. Mar 2008 A1
20080131831 Abels et al. Jun 2008 A1
20080160475 Rojas-Pardini Jul 2008 A1
20080199825 Jahn Aug 2008 A1
20080227049 Sevinc Sep 2008 A1
20080233528 Kim et al. Sep 2008 A1
20080233530 Cinader Sep 2008 A1
20080233531 Raby et al. Sep 2008 A1
20080248439 Griffith et al. Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080286711 Corcoran et al. Nov 2008 A1
20080305450 Steen Dec 2008 A1
20090004619 Oda et al. Jan 2009 A1
20090019698 Christoff Jan 2009 A1
20090042160 Ofir Feb 2009 A1
20090088838 Shaolian et al. Apr 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090197217 Butscher et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090220907 Suyama Sep 2009 A1
20090220920 Primus et al. Sep 2009 A1
20090222075 Gordon Sep 2009 A1
20100092903 Sabilla Apr 2010 A1
20100092905 Martin Apr 2010 A1
20100105000 Scommegna et al. Apr 2010 A1
20100129765 Mohr et al. May 2010 A1
20100129766 Hilgers May 2010 A1
20100178628 Kim Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193979 Goldberg et al. Aug 2010 A1
20100241120 Bledsoe et al. Sep 2010 A1
20100279243 Cinader, Jr. et al. Nov 2010 A1
20100304321 Patel Dec 2010 A1
20110008745 McQuillan et al. Jan 2011 A1
20110027743 Cinader, Jr. et al. Feb 2011 A1
20110059414 Hirsch Mar 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110220612 Kim Sep 2011 A1
20110250556 Heiser Oct 2011 A1
20110270583 Getto et al. Nov 2011 A1
20110287376 Walther Nov 2011 A1
20110314891 Gilbert Dec 2011 A1
20120048432 Johnson et al. Mar 2012 A1
20120148972 Lewis Jun 2012 A1
20120208144 Chiaramonte Aug 2012 A1
20120266419 Browne et al. Oct 2012 A1
20120315595 Beaudoin Dec 2012 A1
20120322019 Lewis Dec 2012 A1
20130065193 Curiel et al. Mar 2013 A1
20130122443 Huang et al. May 2013 A1
20130177862 Johnson Jul 2013 A1
20130196281 Thornton Aug 2013 A1
20130196282 Eichelberger et al. Aug 2013 A1
20130260329 Voudouris Oct 2013 A1
20130315595 Barr Nov 2013 A1
20140154637 Hansen et al. Jun 2014 A1
20140170586 Cantarella Jun 2014 A1
20140234794 Vu Aug 2014 A1
20140255864 Machata et al. Sep 2014 A1
20140287376 Hultgren et al. Sep 2014 A1
20140363782 Wiechmann et al. Dec 2014 A1
20150010879 Kurthy Jan 2015 A1
20150064641 Gardner Mar 2015 A1
20150072299 Alauddin et al. Mar 2015 A1
20150140501 Kim May 2015 A1
20150201943 Brooks et al. Jul 2015 A1
20150265376 Kopelman Sep 2015 A1
20150305833 Cosse Oct 2015 A1
20150313687 Blees et al. Nov 2015 A1
20150351872 Jo Dec 2015 A1
20150359610 Gonzalez et al. Dec 2015 A1
20150366638 Kopelman et al. Dec 2015 A1
20160074139 Machata et al. Mar 2016 A1
20160095670 Witte et al. Apr 2016 A1
20160106522 Kim Apr 2016 A1
20160135926 Djamchidi May 2016 A1
20160166357 Portalupi Jun 2016 A1
20160175073 Huang Jun 2016 A1
20160206403 Ouellette et al. Jul 2016 A1
20160228214 Sachdeva et al. Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20160270885 Kwon et al. Sep 2016 A1
20160278883 Fasci et al. Sep 2016 A1
20160287354 Viecilli et al. Oct 2016 A1
20160310239 Paehl et al. Oct 2016 A1
20160374780 Carrillo Gonzalez et al. Dec 2016 A1
20170086948 Von Mandach Mar 2017 A1
20170105816 Ward Apr 2017 A1
20170105817 Chun et al. Apr 2017 A1
20170128169 Lai et al. May 2017 A1
20170135793 Webber et al. May 2017 A1
20170140381 Ducrohet May 2017 A1
20170151037 Lee Jun 2017 A1
20170156823 Roein Peikar et al. Jun 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170165532 Khan et al. Jun 2017 A1
20170181813 Kalkhoran Jun 2017 A1
20170196660 Lee Jul 2017 A1
20170224444 Viecilli et al. Aug 2017 A1
20170231721 Akeel et al. Aug 2017 A1
20170246682 Duerig Aug 2017 A1
20170252140 Murphy et al. Sep 2017 A1
20170281313 Kim Oct 2017 A1
20170281314 Freimuller Oct 2017 A1
20170296253 Brandner et al. Oct 2017 A1
20170296304 Tong et al. Oct 2017 A1
20170312052 Moss Nov 2017 A1
20170318881 Fonte et al. Nov 2017 A1
20170325911 Marshall Nov 2017 A1
20170340777 Ma et al. Nov 2017 A1
20180014915 Voudouris Jan 2018 A1
20180014916 Cinader, Jr. et al. Jan 2018 A1
20180021108 Cinader, Jr. et al. Jan 2018 A1
20180049847 Oda et al. Feb 2018 A1
20180055605 Witte et al. Mar 2018 A1
20180071057 Rudman Mar 2018 A1
20180110589 Gao Apr 2018 A1
20180132974 Rudman May 2018 A1
20180161121 Butler et al. Jun 2018 A1
20180161126 Marshall et al. Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180185120 Wool Jul 2018 A1
20180185121 Pitts et al. Jul 2018 A1
20180206941 Lee Jul 2018 A1
20180214250 Martz Aug 2018 A1
20180235437 Ozerov et al. Aug 2018 A1
20180243052 Lee Aug 2018 A1
20180303583 Tong Oct 2018 A1
20180338564 Oda et al. Nov 2018 A1
20190001396 Riemeier et al. Jan 2019 A1
20190019187 Miller et al. Jan 2019 A1
20190053876 Sterental et al. Feb 2019 A1
20190090988 Schumacher et al. Mar 2019 A1
20190090989 Jo Mar 2019 A1
20190125494 Li et al. May 2019 A1
20190142551 Dickenson et al. May 2019 A1
20190159871 Chan et al. May 2019 A1
20190163060 Skamser et al. May 2019 A1
20190175304 Morton et al. Jun 2019 A1
20190231488 Dickerson Aug 2019 A1
20190247147 Grande et al. Aug 2019 A1
20190252065 Katzman et al. Aug 2019 A1
20190262103 Cassalia Aug 2019 A1
20190276921 Duerig et al. Sep 2019 A1
20190321136 Martz et al. Oct 2019 A1
20190321138 Roein Peikar et al. Oct 2019 A1
20190328487 Levin et al. Oct 2019 A1
20190328491 Hostettler et al. Oct 2019 A1
20190343606 Wu et al. Nov 2019 A1
20190350682 Cinader, Jr. et al. Nov 2019 A1
20190388189 Shivapuja et al. Dec 2019 A1
20200000551 Li et al. Jan 2020 A1
20200066391 Sachdeva et al. Feb 2020 A1
20200107911 Roein Peikar et al. Apr 2020 A1
20200129272 Roein Peikar et al. Apr 2020 A1
20200138549 Chun et al. May 2020 A1
20200146779 Zhang May 2020 A1
20200146791 Schülke et al. May 2020 A1
20200170757 Kopelman et al. Jun 2020 A1
20200188063 Cinader, Jr. et al. Jun 2020 A1
20200197131 Matov et al. Jun 2020 A1
20200214806 Hung Jul 2020 A1
20200229903 Sandwick Jul 2020 A1
20200275996 Tong et al. Sep 2020 A1
20200281611 Kelly et al. Sep 2020 A1
20200338706 Cunningham et al. Oct 2020 A1
20200345455 Roein Peikar et al. Nov 2020 A1
20200345459 Schueller et al. Nov 2020 A1
20200345460 Roein Peikar et al. Nov 2020 A1
20200352765 Lin Nov 2020 A1
20200360109 Gao et al. Nov 2020 A1
20200375270 Holschuh et al. Dec 2020 A1
20200375699 Roein Peikar et al. Dec 2020 A1
20200390524 Roein Peikar et al. Dec 2020 A1
20200405191 Lotan et al. Dec 2020 A1
20200405452 Song et al. Dec 2020 A1
20210007830 Roein Peikar et al. Jan 2021 A1
20210007832 Roein Peikar et al. Jan 2021 A1
20210045701 Unklesbay et al. Feb 2021 A1
20210068928 Witte et al. Mar 2021 A1
20210077227 Griffin, III et al. Mar 2021 A1
20210093422 Tong et al. Apr 2021 A1
20210128275 Suh et al. May 2021 A1
20210134450 Katzman et al. May 2021 A1
20210137644 Benarouch et al. May 2021 A1
20210145547 Roein Peikar et al. May 2021 A1
20210177551 Roein Peikar et al. Jun 2021 A1
20210186662 Roein Peikar et al. Jun 2021 A1
20210205049 Cinader, Jr. Jul 2021 A1
20210212803 Tong et al. Jul 2021 A1
20210244502 Farkash et al. Aug 2021 A1
20210244505 Tong et al. Aug 2021 A1
20210244507 Curiel et al. Aug 2021 A1
20210251730 Curiel et al. Aug 2021 A1
20210259808 Ben-gal Nguyen et al. Aug 2021 A1
20210275286 Karazivan et al. Sep 2021 A1
20210330430 Khoshnevis et al. Oct 2021 A1
20210338380 Park et al. Nov 2021 A1
20210346127 Cassalia Nov 2021 A1
20210353389 Peikar et al. Nov 2021 A1
20210369413 Li et al. Dec 2021 A1
20210378792 Akopov et al. Dec 2021 A1
20210386523 Raby, II et al. Dec 2021 A1
20210393375 Chekh et al. Dec 2021 A1
20210401546 Gardner Dec 2021 A1
20210401548 Oda et al. Dec 2021 A1
20220008169 Reisman Jan 2022 A1
20220023009 Tong et al. Jan 2022 A1
20220031428 Khoshnevis et al. Feb 2022 A1
20220039921 Kopelman et al. Feb 2022 A1
20220039922 Yamaguchi Feb 2022 A1
20220061964 Khoshnevis et al. Mar 2022 A1
20220087783 Khoshnevis et al. Mar 2022 A1
20220133438 Wratten, Jr. et al. May 2022 A1
20220137592 Cramer et al. May 2022 A1
20220168072 Tong et al. Jun 2022 A1
20220183797 Khoshnevis et al. Jun 2022 A1
20220226076 Roein Peikar et al. Jul 2022 A1
20220226077 Roein Peikar et al. Jul 2022 A1
20220249201 Shuman et al. Aug 2022 A1
20220257341 Somasundaram et al. Aug 2022 A1
20220257344 Tsai et al. Aug 2022 A1
20220287804 Oda Sep 2022 A1
20220304773 Wratten, Jr. et al. Sep 2022 A1
20220304774 Wratten, Jr. et al. Sep 2022 A1
20220314508 Subramaniam et al. Oct 2022 A1
20220323183 Dufour et al. Oct 2022 A1
20220338960 Reising Oct 2022 A1
20220346912 Li et al. Nov 2022 A1
20220361996 Raby et al. Nov 2022 A1
20230070837 Oda Mar 2023 A1
20230072074 Oda Mar 2023 A1
20230100466 Huynh et al. Mar 2023 A1
Foreign Referenced Citations (126)
Number Date Country
1372872 Oct 2002 CN
201079455 Jul 2008 CN
201320224 Oct 2009 CN
102215773 Oct 2011 CN
202365955 Aug 2012 CN
202892116 Apr 2013 CN
203074896 Jul 2013 CN
103505293 Jan 2014 CN
203506900 Apr 2014 CN
104188728 Dec 2014 CN
204049881 Dec 2014 CN
205126459 Apr 2016 CN
105596098 May 2016 CN
105662615 Jun 2016 CN
205569100 Sep 2016 CN
106029002 Oct 2016 CN
106137419 Nov 2016 CN
108690967 Oct 2018 CN
109009504 Dec 2018 CN
3915807 Nov 1990 DE
20 2018 003 574 Aug 2018 DE
10 2018 005 769 Jan 2020 DE
10 2018 133 705 Jul 2020 DE
10 2015 017 301 Mar 2022 DE
0 778 008 Jun 1997 EP
1 139 902 Oct 2001 EP
1 276 433 Jan 2003 EP
1 379 193 Feb 2007 EP
2 076 207 Jul 2009 EP
1 073 378 Jan 2012 EP
2 522 298 Nov 2012 EP
2 617 383 Jul 2013 EP
3 285 678 May 2021 EP
3 954 320 Feb 2022 EP
2 726 049 Aug 2022 EP
3 019 141 Aug 2022 EP
4 034 077 Aug 2022 EP
4 035 649 Aug 2022 EP
4 044 959 Aug 2022 EP
4 048 196 Aug 2022 EP
4065647 Aug 2022 EP
3 691 559 Sep 2022 EP
3 823 813 Sep 2022 EP
3 905 986 Sep 2022 EP
4 056 144 Sep 2022 EP
2315046 Apr 2010 ES
2 525 469 Oct 1983 FR
3 056 393 Oct 2018 FR
11221235 Aug 1999 JP
2009205330 Sep 2009 JP
100549294 Feb 2006 KR
100737442 Jul 2007 KR
100925286 Nov 2009 KR
101301886 Aug 2013 KR
101583547 Jan 2016 KR
101584737 Jan 2016 KR
101723674 Apr 2017 KR
133408 Oct 2013 RU
WO 0180761 Nov 2001 WO
WO 0185047 Nov 2001 WO
WO 2003045266 Jun 2003 WO
WO 2005008441 Jan 2005 WO
WO 2005094716 Oct 2005 WO
WO 2007069286 Jun 2007 WO
WO 2008051774 May 2008 WO
WO 2011034522 Mar 2011 WO
WO 2011090502 Jul 2011 WO
WO 2011103669 Sep 2011 WO
WO 2012089735 Jul 2012 WO
WO 2012140021 Oct 2012 WO
WO 2013019398 Feb 2013 WO
WO 2014070920 May 2014 WO
WO 2016148961 Sep 2016 WO
WO 2016149008 Sep 2016 WO
WO 2016199972 Dec 2016 WO
WO 2016210402 Dec 2016 WO
WO 2017007079 Jan 2017 WO
WO 2017112004 Jun 2017 WO
WO 2017172537 Oct 2017 WO
WO 2017184632 Oct 2017 WO
WO 2017194478 Nov 2017 WO
WO 2017198640 Nov 2017 WO
WO 2018102588 Jun 2018 WO
WO 2018122862 Jul 2018 WO
WO 2018144634 Aug 2018 WO
WO 2018195356 Oct 2018 WO
WO 2019135504 Jul 2019 WO
WO 2020095182 May 2020 WO
WO 2020178353 Sep 2020 WO
WO 2020180740 Sep 2020 WO
WO 2020223744 Nov 2020 WO
WO 2020223745 Nov 2020 WO
WO 2021087158 May 2021 WO
WO 2021105878 Jun 2021 WO
WO 2021214613 Oct 2021 WO
WO 2021225916 Nov 2021 WO
WO 2021226618 Nov 2021 WO
WO 2021225916 Dec 2021 WO
WO 2021245484 Dec 2021 WO
WO 2021252675 Dec 2021 WO
WO 2022099263 May 2022 WO
WO 2022099267 May 2022 WO
WO 2022123402 Jun 2022 WO
WO 2022137109 Jun 2022 WO
WO 2022145602 Jul 2022 WO
WO 2022159738 Jul 2022 WO
WO 2022162488 Aug 2022 WO
WO 2022162528 Aug 2022 WO
WO 2022162614 Aug 2022 WO
WO 2022167899 Aug 2022 WO
WO 2022167995 Aug 2022 WO
WO 2022180466 Sep 2022 WO
WO 2022189906 Sep 2022 WO
WO 2022192409 Sep 2022 WO
WO 2022195391 Sep 2022 WO
WO 2022204711 Sep 2022 WO
WO 2022214895 Oct 2022 WO
WO 2022217269 Oct 2022 WO
WO 2022219459 Oct 2022 WO
WO 2022229734 Nov 2022 WO
WO 2022229739 Nov 2022 WO
WO 2022236287 Nov 2022 WO
WO-2022236027 Nov 2022 WO
WO 2023033869 Mar 2023 WO
WO 2023033870 Mar 2023 WO
WO 2023034876 Mar 2023 WO
Non-Patent Literature Citations (22)
Entry
SinodentalGroup. Braces Bonding Teeth Gems Glue Light Cure Adhesive. Jun. 2021. https://sinodentalgroup.myshopify.com/products/sino-dental-group-orthodontic-brackets-glue-braces-bonding-light-cure-adhesive-kit?pr_prod_strat=use_description&pr_rec_id=0d0a6cdc9&pr_rec_pid=6687895355572&pr_ref_pid=6705886363.
Coro, Jorge C. et al., “MEAW Therapy” MEAW Therapy—Orthodontic Products, accessed via http://www.orthodonticproductsonline.com/2012/11/meaw-therapy/ on Mar. 14, 2016, published Nov. 12, 2012 in 6 pages.
ElSheikh, Moaaz Mohamed, et al. “A Forsus Distalizer: A Pilot Typodont Study”. Jul.-Dec. 2004, KDJ, vol. 7, No. 2, pp. 107-115.
Gilbert, Alfredo. An in-office wire-bending robot for lingual orthodontics. ResearchGate. Article in Journal of clinical orthodontics: JCO, Apr. 2011.
Glauser-Williams Orthodontics: Appliances, http://www.glauserwilliamsorthodontics.com/treatments/orthodontic-appliances.php , accessed Nov. 30, 2015 in 4 pages.
Jiang et al. Bending Process Analysis and Structure Design of Orthodontic Archwire Bending Robot. International Journal of Smart Home. vol. 7, No. 5 (2013), pp. 345-352. http://dx.doi.org/10.14257/ijsh.2013.7.5.33.
Jiang et al. A Review on Robot in Prosthodontics and Orthodontics. Hindawi Publishing Corporation. Advances in Mechanical Engineering. Article ID 198748. 2014. 11 pages.
Mahony, Derek, “How We Got From There to Here and Back”. Dental Learning Hub (Capture of web page dated Jun. 24, 2013 downloaded from http://web.archive.org/web/20130624145806/http://www.dental-learninghub.com/Clinical/Orthodontics.aspx, downloaded Feb. 7, 2014).
Miller, R.J. et al. “Validation of Align Technology's Treat III™ Digital Model Superimposition Tool and Its Case Application”. Orthodontic Craniofacial Res.,2003, vol. 6 (Suppl 1): pp. 143-149.
SureSmile. 2013. About SureSmile. (Capture of web page dated Jun. 21, 2013 downloaded from http://web.archive.org/web/20130621031404/http://suresmile.com/About-SureSmile, downloaded Feb. 7, 2014).
Xia, et al. Development of a Robotic System for Orthodontic Archwire Bending. 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, May 16-21, 2016. pp. 730-735.
Yang, Won-Sik, et al. “A Study of the Regional Load Deflection Rate of Multiloop Edgewise Arch Wire.” Angle Orthodontist, 2001, vol. 7, No. 2, pp. 103-109.
IPhone 3D scanning to dental software, screen shots at 0:09 and 7:00 of YouTube video, https://www.youtube.com/watch?v=QONGdQ3QiFE, uploaded Oct. 1, 2018 in 2 pages.
Invisalign® SmileView™, How Would You Look with Straight Teeth?, https://www.invisalign.com/get-started/invisalign-smileview?v=0#start, printed Jun. 7, 2022 in 2 pages.
A ScanBox demo, https://www.youtube.com/watch?v=MsCfv2PDQ0o, screen shots at 0:08 and 0:19 of YouTube video, uploaded May 5, 2019 in 2 pages.
Southern Maine Orthodontics, Virtual Orthodontic Treatment, https://southernmainebraces.com/virtual-orthodontic-treatment/, printed Jun. 7, 2022 in 3 pages.
International Search Report and Written Opinion in Application No. PCT/US2022/019626, mailed May 23, 2022, in 14 pages.
Spini et al., “Transition temperature range of thermally activated nickel-titanium archwires”, J Appl Oral Sci., dated Apr. 2014, vol. 22, No. 2, pp. 109-117.
In Brace, Brush & Floss Easily with In Brace, dated as uploaded on: May 26, 2022, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=uAsxiBlbY4Y (Dated Year: 2022).
MEAW School, Introduction to MEAW (Multi-loop Edgewise Arch Wire), dated as uploaded On: Mar. 24, 2021, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=ne785jlzN_Pg (Year: 2021).
Richard Gawel, Swift Health Systems Raises $45 Million to Finance Invisible Orthodontics, dated as published on: Dec. 4, 2019, dentistrytoday.com, Retrieved from Internet: https://www.dentistrytoday.com/products/swift-health-systems-raises-45-million-to-finance-invisible-orthodontics/ (Dated Year: 2019).
In Brace, What Is In Brace?—Integration Booster, dated as uploaded on: May 22, 2023, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=ANUPkCSfQo4 (Dated Year: 2023).
Related Publications (1)
Number Date Country
20230070165 A1 Mar 2023 US
Provisional Applications (1)
Number Date Country
63240627 Sep 2021 US