Information
-
Patent Grant
-
6182477
-
Patent Number
6,182,477
-
Date Filed
Monday, May 15, 200024 years ago
-
Date Issued
Tuesday, February 6, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 066 231
- 066 232
- 066 237
- 066 13
- 066 19
- 066 218
- 700 141
-
International Classifications
-
Abstract
An electronic pattern circular knitting machine and method are provided in which a first encoder is operatively associated with the needle cylinder with which it rotates synchronously and generates a pulse signal for each knitting needle and transmits that signal to a central controller for the knitting machine, in which is stored a datum position for the first encoder, for comparison with pre-stored pattern data to calculate the position of each knitting needle; in which a second encoder is operatively associated with a dial and its cam system, the movement of which changes the knitting timing, for generation and transmission of a position signal to the central controller for comparison with a stored corresponding position to the datum position of the first encoder and a determination of whether the knitting timing has been changed and if so, to adjust automatically the needle selection timing.
Description
FIELD OF THE INVENTION
The present invention relates to circular knitting machines and more particularly to a method of and apparatus for controlling an electronic pattern circular knitting machine.
BACKGROUND OF THE INVENTION
Electronic pattern circular knitting machines are currently in extensive use in the production of knitted fabrics of various designs from relatively simple to very complex. Typically, circular knitting machines include a rotatable needle cylinder having a multiplicity of grooves in the outer periphery parallel to the axis of rotation of the cylinder, each of which contains a knitting needle for reciprocation between a plurality of operative and inoperative positions. The rotatable needle cylinder cooperates with a rotatable, horizontal dial having a multiplicity of radial grooves in the upper surface thereof, each of which contains either a dial needle or a sinker depending on the type of knitting machine. The cylinder and dial are driven in rotation by a drive mechanism and the cylinder needles and dial needles or sinkers are moved past respective stationary cams which reciprocate the cylinder needles and dial needles or sinkers.
Since the cylinder needles and dial needles or sinkers cooperate in the knitting operation, the timing of the operation thereof is very important. Examples of such timing are synchronous and delayed. As knit patterns are changed, it is frequently necessary to change the knitting timing by changing the position of the needle cams. Of course, any change in the knitting timing must be correlated to the electronic pattern control and needle selection mechanism, which may be difficult and historically has been time consuming and expensive.
In Japanese Patent Provisional Publication No. 298857/1998 (Japanese Patent Application No. 113469 of 1997), it is proposed to employ an optical encoder associated with the needle cylinder for monitoring the position of each knitting needle and therefore determining changes in the timing of the needles by the cams associated with such knitting needles. While an improvement over conventional technology, this proposed arrangement has the disadvantage of only accommodating timing changes with respect to the knitting needles on the cylinder and therefore cannot accommodate timing changes with respect to dial needles or sinkers.
SUMMARY OF THE INVENTION
With the foregoing in mind, it is an object of the present invention to provide an electronic pattern circular knitting machine and method that automatically calculates the changed position of the dial corresponding to the needle cylinder when the knitting timing is changed.
This object is accomplished by providing an electronic pattern circular knitting machine having a controlling device for controlling the changing of the knitting timing, which device includes a first encoder operatively associated with the needle cylinder, a second encoder operatively associated with the dial, and transmission means connecting the first and second encoders, and by operating this electronic pattern circular knitting machine by initially determining the datum position of the first encoder for the knitting timing then in use and entering that datum position into the main controller for the circular knitting machine; and based on the entered datum position of the first encoder, entering the corresponding position of the second encoder into the main controller. Upon a change in the knitting timing, such as by moving the dial cam, the value of the moved position, outputted by the second encoder, is compared with the initial value stored in the main controller, and the comparison value is compared with the value of the first encoder monitoring the timing of each knitting needle on the needle cylinder and the resultant comparison is output to the needle-selection actuator to adjust automatically the needle-selection timing.
The method of the present invention further includes the following steps for each needle: determining whether the knitting timing position has been changed; if such timing has been changed, adjusting automatically the needle-selection timing on the basis of the comparison value as described above; if such timing has not been changed, determining whether the current timing is the cylinder-needle-selection timing; if so, outputting the cylinder-needle-selection data to the cylinder-needle-selection actuator; if the current timing is not the cylinder-needle-selection timing, then determining whether the current timing is the dial-needle-selection timing (or dial-sinker-selection timing); if so, then outputting the dial-needle-selection data to the dial-needle-selection actuator; and if the current timing is not the dial-needle-selection timing, returning to the first step and repeating these steps until the current timing is the dial-needle-selection timing.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects and advantages of the invention, and the manner in which the same are accomplished, will be more readily understood when taken in conjunction with the accompanying detailed description and drawings in which:
FIG. 1
is an elevational view of an electronic pattern circular knitting machine incorporating the present invention;
FIG. 2
is an enlarged, fragmentary sectional view of the upper right hand portion of the knitting machine shown in
FIG. 1
;
FIG. 3
is an enlarged, fragmentary sectional view of a portion of the bed, and ring gear of the knitting machine of FIG.
1
and showing the first encoder of the present invention;
FIG. 4
is an enlarged fragmentary sectional view of a portion of the knitting machine of
FIG. 1
showing the dial and second encoder of the present invention;
FIG. 5
is a fragmentary sectional view taken substantially along line
5
.
5
in
FIG. 4
;
FIG. 6A
is a schematic view of a synchronous timing diagram for the knitting machine of
FIG. 1
;
FIG. 6B
is a schematic view of a delayed timing diagram for the knitting machine of
FIG. 1
;
FIG. 7
is a schematic view showing a block diagram of the signal-transmission route of the present invention; and
FIG. 8
is a schematic view of a flow chart showing the action of the controlling device of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring now more specifically to the drawings, there is illustrated in
FIG. 1
, an electronic pattern circular knitting machine, generally referred to at
10
. Knitting machine
10
includes a bed
11
supported by a plurality of legs
12
. A lower gear wheel
13
(ring gear) is rotatably mounted on bed
11
by suitable bearings (not shown) and mounts for rotation therewith a needle cylinder
14
(FIG.
2
). Needle cylinder
14
has a multiplicity of vertical, spaced-apart grooves in the outer periphery thereof and a knitting needle
15
is slidably mounted in each such groove.
A cylinder cam block
16
is mounted on bed
11
adjacent the needle cylinder
14
and carries a plurality of cams
17
on the side thereof facing the needle cylinder
14
. As cylinder
14
rotates, it carries the knitting needles
15
past the cams
17
where butts on the needles
15
engage the cams
17
to reciprocate the needles
15
.
A needle dial
20
is rotatably mounted above and in operative association with the needle cylinder
11
by an axle
21
. Dial
20
has a multiplicity of radial spaced-apart grooves in the upper surface thereof. A dial needle
22
is slidably mounted in each such dial groove. It should be understood that the present invention, while being described in connection with a needle dial, is applicable to knitting machines having sinker dials. An internal cylinder
23
surrounds axle
21
and is telescopically received in an external cylinder
24
. A dial cam block
25
is mounted on the lower end of internal cylinder
23
and carries dial cams
26
on the lower surface thereof in operative association with the dial needles
22
.
An upper gear wheel
27
is mounted on the upper end of axle
21
for driving axle
21
and thus needle dial
20
in rotation. As with all knitting machines, knitting machine
10
includes a main drive motor (not shown) which is drivingly connected to a drive shaft
30
(FIG.
2
). A lower pinion gear
31
is mounted on drive shaft
30
for rotation therewith and meshes with lower gear wheel
13
to rotate gear wheel
13
and thus needle cylinder
14
. An upper pinion gear
32
is mounted on the upper end of drive shaft
30
for rotation therewith and meshes with upper gear wheel
27
to rotate gear wheel
27
, axle
21
and dial
20
. Accordingly, the needle cylinder
14
and dial
20
rotate synchronously when the main motor is operating.
The knitting machine
10
includes a main electronic pattern controller (CPU); generally indicated at
40
(FIG.
7
), as is well known in the knitting art. Controller
40
includes a memory in which pattern data and yarn-switching data are stored as part of a pre-set knitting pattern, a numeric key pad, a monitor, etc. (not shown). In addition to the controller
40
, knitting machine
10
includes a cylinder needle selection actuator
41
and a dial needle selection actuator
42
for selecting and actuating the cylinder needles
15
and dial needles
22
, respectively, in accordance with the knitting pattern then active.
A first encoder
43
(
FIGS. 3 and 7
) is provided for cylinder
14
and a second encoder
44
(
FIGS. 4
,
5
and
7
) is provided for dial
20
. Preferably, the encoders
43
and
44
are absolute type encoders, such as Model TRD-NA2048 NWE2486 made and sold by Koyo Electronics Industries Co., Ltd. (Kodaira-shi, Tokyo). This encoder inputs and outputs signals of absolute positions corresponding to rotational angles. Because of this characteristic, the encoders
43
and
44
do not require a counter, and as long as it is turned on, it generates a continuous output according to the angle of the input rotation axis.
The first encoder
43
is mounted on the bottom of bed
11
(
FIG. 3
) together with a datum sensor (not shown). Encoder
43
has a shank
43
a
on which are mounted double pinions
45
,
46
for rotation therewith. Pinions
45
,
46
have internal springs (not shown) biasing these pinions together so that no gap is formed therebetween and both pinions
45
,
46
mesh with lower gear wheel
13
. First encoder
43
is connected to the controller
40
by a cable
47
.
The second encoder
44
is mounted on the upwardly widening portion of external cylinder
24
and includes a shank
44
a
on which are mounted double pinions
50
,
51
for rotation therewith (FIGS.
4
and
5
). Pinions
50
,
51
have internal springs biasing the pinions
50
,
51
together so that no gap is formed therebetween and mesh with a rack
52
carried by the internal cylinder
23
. Second encoder
44
is connected to the controller
40
by a cable
53
.
In setting the knitting timing, the first encoder
43
is adjusted initially by rotating the knitting machine to locate the datum position “0” using the datum sensor, the datum-detecting element (not shown) that is attached to lower gear wheel
13
, and three LED lamps for datum adjustment (also not shown). When the datum position “0” is located, that position is entered into the controller
40
by means of the key pad on the control panel. The meshing of the pinions
45
,
46
with the gear wheel
13
is then fine-tuned until two of the LED lamps are lit simultaneously which indicates that the datum position “0” of the first encoder
43
has been determined and established.
The second encoder
44
is then adjusted after the datum position “0” of the first encoder
43
has been determined by fine-tuning or fine-adjusting the meshing of the pinions
50
,
51
with the rack
52
. When one of the LED lamps for mesh adjustment is lit, the position of the second encoder
44
corresponding to the datum position “0” of the first encoder
43
is determined. When all of the LED lamps for datum adjustment, the LED lamps for mesh adjustment corresponding to pinions
45
,
46
of first encoder
43
and the LED lamps for mesh adjustment corresponding to pinions
50
,
51
of second encoder
44
are lit, the position of the second encoder
44
is stored in the memory of Controller
40
.
The lower gear wheel
13
and pinions
45
,
46
of the first encoder
43
rotate at the same speed ratio. Adjust any knitting needle
15
on the needle cylinder
14
to the datum position “0” of the knitting machine
10
and it will return to its original position after pinions
45
,
46
of the first encoder
43
have rotated a dozen or so times. Because of this configuration, when the electronic pattern circular knitting machine
10
operates, the controller
40
can ascertain the rpm of the pinions
45
,
46
from the output of the rotation angle of the first encoder
43
, and in addition, can deduce the datum position “0” of the electronic pattern circular knitting machine
10
from the rpm.
The operation of the control means of the present invention will now be described. When the knitting machine
10
operates, the cylinder
14
and dial
20
rotate, as does lower gear wheel
13
causing first encoder
43
to generate a pulse signal synchronized with each knitting needle
15
as a needle sensor and to transmit this needle sensor signal by cable
47
to the controller
40
. The controller
40
compares this signal with the pre-stored pattern data to calculate the position of the cylinder knitting needle
15
. The calculated comparison value generates an actuator-activating signal, which is output to the cylinder needle selection actuator
41
or the dial needle selection actuator
42
. At this time, the striper data is also compared and calculated to allow the yarns to be changed if required.
When the knitting timing (i.e. the cam timing of the needle cylinder and the dial) is changed, such as, for example, a change from the synchronized cam timing shown in
FIG. 6A
to the delayed cam timing shown in
FIG. 6B
or vice versa, the dial cam
26
opposing the dial needles
22
moves over the distance “X” in
FIG. 6B
with respect to the cylinder cam
17
opposing the cylinder needles
15
, and the dial cam
26
disengages.
The movement of dial cam
26
the distance “X” is output by the second encoder
44
to the controller
40
and is compared with the previously determined value when the position of the second encoder
44
was stored in the controller
40
during the initial setting or set-up, and this comparison value automatically adjusts the timing of the output to the dial needle selection actuator
42
.
The method of operation of the electronic pattern circular knitting machine
10
will now be described with particular reference to the flow chart of FIG.
8
. When the knitting machine
10
is started, the first step, indicated at N
50
, is to determine whether or not the knitting timing has been changed. This is accomplished by comparing the signals from the first and second encoders
43
and
44
with the pre-stored values from the initial set-up.
If the knitting timing is determined to have been changed, the value after the dial
20
has been moved is compared with the initial set-up value pre-stored. Then, the needle selection timing is automatically adjusted using this comparison value, indicated at N
51
.
If the knitting timing is determined not to have been changed by step N
50
, the step
51
is by-passed and a determination of whether or not the current timing in the cylinder needle timing is made, as indicated at N
52
. If so, the cylinder needle selection data is output to the cylinder needle selection actuator
41
, as indicated at N
53
.
If the current timing is determined not to be the cylinder needle timing by step N
52
, step N
53
is by-passed and a determination of whether or not the current timing in the dial needle selection timing is made, as indicated at N
54
. If so, the dial needle selection data is output to the dial needle selection actuator
42
, as indicated at N
55
, and the process is repeated for each succeeding needle
15
.
If the current timing is determined not to be the dial needle selection timing by step N
54
, the process returns to step N
50
and repeats until the current timing becomes the dial needle selection timing.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims
- 1. In an electronic pattern circular knitting machine having a rotatable needle cylinder, a multiplicity of knitting needles carried by said cylinder, cylinder cam means for operating said cylinder needles, a rotatable dial operatively associated with said cylinder, a multiplicity or dial knitting elements carried by said dial, dial cam means for operating said dial knitting elements, central pattern control means for storing knitting pattern data and for controlling the knitting operation of said knitting machine, cylinder needle selection actuating means for receiving cylinder needle selection data for said central control means and for selecting and actuating cylinder needles responsive thereto, and dial knitting element selection actuating means for receiving dial knitting element selection data from said central control means and for selecting and actuating said dial knitting elements responsive thereto, the improvement comprising means for controlling the knitting timing of said knitting machine comprising first encoding means operatively connected to said needle cylinder for rotation synchronously therewith and having a datum position entered and stored in said central control means, said first encoding means transmitting to said central control means a continuous pulse signal synchronized with each of said cylinder knitting needles for comparison with the pre-stored pattern data to calculate the position of each cylinder knitting needle, andsecond encoding means operatively connected to said dial and said first encoding means and having a corresponding position to the datum position of said first encoding means entered and stored in said central control means, said second encoding means monitoring the position of said dial cam means and thus sensing any change in the position of said dial cam means and transmitting to said central control means a pulse signal for comparison with the initial value of the position of said second encoding means corresponding to the datum position of said first encoding means for automatically adjusting the needle selection timing.
- 2. An electronic pattern circular knitting machine according to claim 1 wherein said first and second encoding means comprises absolute type encoders for generating and transmitting signals of absolute positions corresponding to rotational angles.
- 3. An electronic pattern knitting machine according to claim 2 wherein said first and second encoders include pinions and said first encoder pinion mesh with a gear wheel rotating said needle cylinder and said second encoder pinion meshes with a rack gear connected to said dial cam means.
- 4. A method of controlling the changing of the knitting timing in an electronic pattern circular knitting machine comprising(a) storing in a central controller a datum position for a first encoder operatively connected to a needle cylinder of the knitting machine, (b) establishing and storing in the central controller a corresponding position to the datum position of said first encoder of a second encoder operatively associated with a dial of the knitting machine, (c) causing the first encoder to generate and to transmit to said central controller a pulse signal synchronized with each knitting needle carried by the needle cylinder as a needle sensor as the needle cylinder rotates, (d) causing the second encoder to generate and transmit to said central controller a pulse signal as to the position of a dial cam, the movement of which changes the knitting timing, (e) determining whether the knitting timing position of the dial cam has been changed by comparing the pulse signal from the second encoder with the stored initial corresponding position, (f) if the knitting timing position of the dial cam is determined to have been changed, automatically adjusting the needle-selection timing of the knitting machine based on the comparison performed in the preceding steps, (g) if the knitting timing is determined not to have been changed, determining whether the current timing is the cylinder needle selection timing, (h) if so, outputting cylinder needle selection data to a cylinder needle selection actuator of the knitting machine, (i) if not, determining whether the current timing is the dial knitting element timing, (j) if so, dial knitting element selection data to a dial knitting element selection actuator of the knitting machine, (k) if not, returning to step (g) and repeating that step and subsequent steps hereof until the current timing is determined to be the dial knitting element selection timing, and (l) returning to step (g) and repeating that step and subsequent steps for each knitting needle.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-135640 |
May 1999 |
JP |
|
US Referenced Citations (7)
Foreign Referenced Citations (1)
Number |
Date |
Country |
10298857 |
Apr 1997 |
JP |