The present description relates generally to methods of and apparatuses for evaluating the performance of a control system. More specifically, the present description relates to automated methods of and apparatuses for evaluating the performance of a control system which utilize a series of tests, such as standardized tests.
It is known to use feedback control loops in modern heating, ventilating, and air-conditioning (HVAC) control systems and proportional plus integral action is the most commonly employed control law. Despite the prevalence of this standard and well-understood control strategy, building performance is frequently hampered by poorly performing feedback control loops. System controllers utilizing feedback control loops are often badly tuned, which may lead to sluggish or oscillating system responses. Other times, the plant (i.e., the device or other part of the system to be controlled) deteriorates or malfunctions to such a degree that it can no longer be controlled. In the latter case, bad tuning might be suspected and extensive time may be expended trying to re-tune the loop before discovering that the system cannot be controlled with proportional plus integral action.
Commissioning typically relates to testing and verifying the performance of a feedback control loop. Performing proper commissioning could eliminate many of the problems with feedback control loops in control systems. Commissioning is normally performed after control systems have been installed and before they are brought into full operation while there is still an opportunity to perform tests to verify acceptable performance. This opportunity is often not taken advantage of due to time constraints, limited availability of skilled personnel, a large number of control loops and large amounts of data, and a lack of standardized and repeatable test procedures. The result of inadequate commissioning is that installation, configuration, and tuning problems are not identified and then persist, sometimes throughout the life of the buildings.
Many commissioning-type problems may not be detected during the life of a building due to the effect of compensatory action between interacting control systems. For example, a heating coil further downstream may mask a leaking cooling valve in a duct system. Or a faster reacting loop may be masking the oscillations in a slower loop. Often a problem is only deemed to exist when occupants are dissatisfied or energy use is significantly affected and in many cases only the severest problems will be noticed. Further, once a problem is detected during the normal operation of a building, the same kind of issues that were faced during commissioning arise once again. For example, there are time constraints, due to cost, for fixing the problem; a lack of skilled personnel; large numbers of control loops generating overwhelming amounts of data, and a lack of standardized tests.
In view of the foregoing, it would be desirable to provide a method of and apparatus for evaluating the performance of a control system, such as a control loop in an HVAC system, that makes the adoption of more rigorous commissioning and troubleshooting more practicable and less time consuming by utilizing automated standardized test procedures which may be carried out in parallel on multiple feedback control loops.
Additionally, many system controllers operate as regulators with fixed setpoints, and for some types of control systems, the artificial introduction of a setpoint change for purposes of performance assessment may be impractical. For other systems, little or no information about certain control system parameters may be available. Thus, it would further be desirable to provide a method of and apparatus for evaluating the performance of a control system which provides not only invasive testing techniques, but also non-invasive testing techniques which do not disturb normal operation of the control system. It would also be desirable to provide a method of and apparatus for evaluating the performance of a control system which requires little or no prior information about a particular feedback control loop.
According to an exemplary embodiment, a method of evaluating the performance of a control system includes receiving data from the control system, wherein the data is received by a passive testing function, and calculating a parameter related to the performance of the control system using the passive testing function.
According to another exemplary embodiment, an apparatus for evaluating the performance of a control system includes a processor operable to execute a passive testing function, wherein the passive testing function is configured to receive data from the control system and calculate a parameter related to the performance of the control system.
According to another exemplary embodiment, an apparatus for evaluating the performance of a control system includes means for executing a passive testing function, wherein the passive testing function is configured to receive data from the control system and calculate a parameter related to the performance of the control system.
According to another exemplary embodiment, an apparatus for evaluating the performance of a control system includes a processor operable to execute an active testing function, wherein the active testing function is configured to provide a sequence of step changes to an input of the control system, receive data from the control system in response to the sequence of step changes, and calculate a parameter related to the performance of the control system.
According to another exemplary embodiment, a method of evaluating the performance of a control system includes receiving data from the control system; wherein the data is received by a passive testing function, and wherein the passive testing function is at least one of a load disturbance detection test and an oscillation detection test. The method also includes calculating a parameter related to the performance of the control system using the passive testing function.
According to another exemplary embodiment, an apparatus for evaluating the performance of a control system includes a processor operable to execute a passive testing function, wherein the passive testing function is at least one of a load disturbance detection test and an oscillation detection test, and wherein the passive testing function is configured to receive data from the control system, and calculate a parameter related to the performance of the control system.
Other features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many modifications and changes within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
The exemplary embodiments will hereafter be described with reference to the accompanying drawings, wherein like numerals depict like elements, and:
In the following description, for the purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the present invention. It will be evident to one skilled in the art, however, that the exemplary embodiments may be practiced without these specific details. In other instances, structures and device are shown in diagram form in order to facilitate description of the exemplary embodiments. Furthermore, while the exemplary embodiments are often described in the context of HVAC control system utilizing proportional plus integral (PI) action controllers, it should be understood that the disclosed method of and apparatus for evaluating the performance of a control system may be used in any of a variety of control systems and control methodologies.
Control system 110 may be a control system, such as an HVAC system, which may include one or more industrial controllers utilizing any of a variety of control methodologies. For example, in one embodiment the control methodology may be a proportional plus integral (PI) methodology, and control system 110 may include one or more digital PI controllers operating in discrete time which implement one or more feedback control loops. In other embodiments, control system 110 may include other types of control systems and methodologies.
where Kc is the controller gain and Ti is the integral time.
Invasive Testing Functions
Referring again to
Invasive testing functions 120 include both open-loop testing functions and closed-loop testing functions. Capacity test 121, quick tune test 122, hysteresis test 123, and extended test 124 are open-loop tests. In these tests, controller 202 is effectively removed from feedback control loop 200 (e.g., by a manual override function) and a step change sequence is applied to U(s). In this way, the performance of plant 204 being controlled by feedback control loop 200 may be evaluated by observing the response to a step change to U(s) without the effects of controller 202. Thus, the focus of capacity test 121, quick tune test 122, hysteresis test 123, and extended test 124 is on the performance of plant 204 rather than controller 202.
Closed-loop test 125 is a closed-loop testing function. In this test, controller 202 remains in feedback control loop 200 such that the performance of plant 204 as well as the performance of controller 202 may be evaluated by observing the response to a step change sequence applied to input command or setpoint signal R(s). Thus, the focus of closed-loop test 125 is on both the performance of plant 204 and the performance of controller 202.
The various invasive testing functions 120 serve different purposes in assessing the performance of a feedback control loop. For example, the purpose of capacity test 121 is to estimate the gain or capacity of plant 204. Quick tune test 122 is similar to capacity test 121, but the emphasis is placed on finding a set of tuning parameters for controller 202 instead of accurately estimating the capacity. Quick tune test 122 is particularly useful for tuning systems with static nonlinearities such as non-uniform gain over the input range of U(s). Hysteresis test 123 is designed to characterize the amount of “play” or “slack” in a particular device controlled by feedback control loop 200 (e.g., a valve). Hysteresis is a form of nonlinearity where the manipulated device does not change position due to slack when a small change of U(s) is applied to it. Extended test 124 is designed to characterize the static nonlinearity of plant 204. Presence of static nonlinearity can make feedback control loop 200 very difficult to control. Typical examples of this behavior are oversized valves that have a high gain at one end of the range of U(s). By characterizing the nonlinear characteristics of the valve, the effects of nonlinearity may be reduced to maintain satisfactory control. Closed-loop test 125 is designed to characterize the performance of controller 202 where plant 204 exhibits dynamic nonlinearity. Dynamic nonlinearity exists where the dynamics of plant 204 change when U(s) changes direction.
According to an exemplary embodiment, testing tool 100 may include a time-out feature so that a particular test will fail if no parameter convergence has occurred within a period of five times the specified value of maximum time constant τ. Accordingly, in this embodiment, where an arbitrarily large value of maximum time constant τ is specified for an unidentified system, a user may supervise or intervene with the test to ensure that an excessively long period does not elapse before time-out. While there is no theoretical lower bound on the sample interval Δt, the sampling interval is preferably smaller than half the expected time delay or smaller that half the maximum time constant τ, which ever yields the smallest interval.
In step 320, feedback control loop 200 is reset to the initial testing conditions and steady state operation of feedback control loop 200 under the initial testing conditions is verified. The initial testing conditions for each invasive testing function 120 will be discussed with reference to
In step 330, an input sequence of one or more step changes is applied to the feedback control loop 200. The step change sequence is applied to U(s) for all open-loop tests and to input command signal or setpoint R(s) for closed-loop test 125.
Because the system identification function in step 340 may be sensitive to the system being in steady-state before starting the test, the gain, time constant, and time delay parameters estimated for plant 204 from the first step from 0 to 15 percent may not be accurate. Accordingly, in the illustrated embodiment, the estimated parameters from the first step are discarded and another 15 percent step is performed after the input is returned to zero, as shown by segment 716, followed by a return to zero after this step.
Through the series of small steps, extended test 121 can characterize the input-output relation for plant 204 for the entire range of U(s). This information can then be used for designing strategies to achieve better control. For example, one such strategy is to cancel the static nonlinearity by modifying U(s) using the identified input-output relation as will be described below with regard to step 350.
Referring again to
According to an exemplary embodiment, the system identification function includes an algorithm that is used to estimate the parameters in a first-order plus time delay (FOPTD) model. The parameter estimation algorithm directly estimates parameters in a continuous time transfer function model via substitution of the s operator. The s operator is redefined in terms of a first-order low-pass filter given by:
The s operator is then:
The definition of the s operator given in Eq. (3) may then be substituted into a transfer function of interest. In the parameter estimation algorithm, a second-order model is used to represent plant 204, i.e.:
The H(s) operator is substituted for the s operator in the second order model, which yields:
Accordingly, in the s-domain, the output Y(s) is given by:
Y(s)=−α1[Y(s)H(s)]−α1[Y(s)H(s)H(s)]+β3[U(s)H(s)H(s)] (6)
A transformation into the time domain gives the following input-output model:
y(t)=−α1yƒ1(t)−α1yƒ2(t)+β1uƒ2(t) (7)
where
where L−1 is the inverse Laplace transform. The filtered inputs and outputs are realizable by using discrete form low-pass filters operating in series.
There is a linear transformation between the parameters α1 . . . αn, β1 . . . βn and the original transfer function parameters a1 . . . an, b1 . . . . bn when the time constant in the low-pass filters is greater than zero. In general terms, this transformation is given by:
θr═Fθ+G (10)
where θT=[−a1 . . . −an b1 . . . bn] is the parameter vector containing the transfer function parameters. F and G are given by:
and
G=[g1 . . . gn 0 . . . 0]; gi=(in)(−1)i (13)
The matrix F is invertible when M is invertible, which occurs for all τ>0. Because of the linear relationship between parameters, the parameters in the original transfer function can be estimated directly from input-output data using a recursive least-squares algorithm.
At step 904, matrices are set up for transforming estimated parameters to desired form according to:
At step 906, matrices are set up for auxiliary model used to generate instrumental variables according to:
At step 908, a high-pass filter is applied to measured process output to eliminate any offset according to:
ykhp=γ(yk−1hp)+γ[yk−yk−1] (20)
At step 910, auxiliary model discrete state space (in closed-loop r is used instead of u) is updated according to:
{circumflex over (x)}k+1=C{circumflex over (x)}k+duk; {circumflex over (x)}=[{circumflex over (x)}1 {circumflex over (x)}2 {circumflex over (x)}3] (21)
At step 912, discrete state space of state variable filters is updated according to:
uk+1ƒ=Aukƒ+Buk
yk+1ƒ=Aykƒ+Bykhp
{circumflex over (x)}k+1ƒ=A{circumflex over (x)}kƒ+B{circumflex over (x)}2,khp (22)
At step 914, regressor and instrumental variable vectors are constructed according to:
At step 916, the regressor vector is transformed and a prediction error (e) is calculated according to:
ψi=FTφi;
ek=ykhp−(θk−1Tψk+GTφk) (25)
At step 918, the P matrix is updated according to:
At step 920, the second-order model parameter vector is updated according to:
{circumflex over (θ)}k={circumflex over (θ)}k−1+Pkηkek; where θT=[−a1 −a2 b1] (27)
The parameter estimation algorithm described above allows estimation of the parameters in a second order model from input-output measurements. An additional transformation is thus needed to obtain the parameters in a FOPTD model. The steady-state gain of plant 204 may be evaluated directly from the second order parameters by setting s to zero in Eq. (4). The steady state gain is accordingly given by:
Estimation of the time delay (L) and time constant (T) for plant 204 is achieved by fitting the FOPTD model to the second order model in the frequency domain so that the two models intersect at a phase lag of −π/2. This methodology provides an estimate of original the time delay and time constant for plant 204 with the second-order model acting as the intermediary model in the procedure. The time constant estimate is:
The time delay estimate is:
The time constant and time delay will be indeterminate when:
Equating the characteristic equation of the second-order model to the standard second-order characteristic equation as defined by Q(s)=s2+2ξωN+ωN2, T and L become indeterminate when the damping factor ξ is less than 1/16. It is possible that such an underdamped plant may be identified if the data were corrupted by unmeasured disturbances. According to one embodiment, in order to extract L and T values for the case when the constraint in Eq. (31) is violated, an alternative procedure may be used. The alternative procedure is based on the geometry of the time domain response to a step change of the second-order model. First, the time constant is evaluated as the inverse of the maximum gradient of the response according to:
The response is given by:
The time delay for plant 204 is then evaluated based on the point where the tangent to the point of maximum slope on the response intersects the y-axis, hence:
{circumflex over (L)}=tm−{circumflex over (T)}y(tm) (34)
where
is the time of maximum slope
The static gain estimate obtained from the intermediary second order model is used to detect parameter convergence. The second order model is of the form:
The static gain estimate at sample i is obtained from estimates of the second order model parameters as follows:
The gain estimate varies according to the following relation when new information is being obtained during a test:
In Eq. (38) α may tend to vary monotonically with time, beginning at a value smaller than the overall plant time constant and becoming larger than the plant time constant as a convergent condition evolves. Accordingly, a normalized convergence index c may be calculated from the state variable filter time constant τ which also relates to an estimate of the maximum time constant of plant 204. The normalized convergence index c is given by:
where c→0 as convergence progresses. According to an exemplary embodiment, a convergence threshold value of approximately 0.5 may be used to provide satisfactory results across a range of systems. To allow for the effect of noise in the process, convergence is preferably indicated only when a statistically significant number of sequential threshold violations occur. For example, in one embodiment, consideration of approximately thirty samples may provide satisfactory results.
When convergence has occurred, the filter time constant τ is updated based on the estimated average residence time (given by L+T). According to one embodiment, since, the τ value has to be greater than the time constant of plant 204, the time constant value may be set to three times the estimated average residence time, i.e., τ=3(L+T).
Referring again to
Calculation of tuning parameters for controller 202 is performed for each of the non-invasive test functions 120 according to the tuning rule given by:
where Kc is the controller gain; Ti is the integral time; and Kp, L, T are the gain, time delay, and time constant respectively as determined for plant 204 in step 340. Although the gain, time delay, and time constant for plant 204 are estimated for each test in step 340, use of the values directly in the tuning rule of Eq. (40) would yield parameters for controller 202 that only produce the desired control performance at the specific operating points exercised in the test. Accordingly, in one embodiment, adjustments may be made to the parameter values estimated in step 340 to allow for expected non-linearity, and then the adjusted parameters may be used in the tuning rule. According to an exemplary embodiment, a different adjustment procedure may be used for each of the non-invasive tests 120 as described below.
For example, in capacity test 121, control loop 200 is put in open-loop and input command signal R(s) is stepped from 0 percent to 100 percent and back again to 0 percent. Most of the dynamic non-linearity in HVAC systems, for example, is related to the direction of change in the manipulated variable rather than the magnitude of change. For example, heat exchangers exhibit different dynamics depending on the direction of heat flow between fluids of different heat capacity, i.e., the air leaving a water-to-air heating coil takes longer to cool down than it does to heat up. Capacity test 121 sufficiently characterizes dynamic non-linearity since a step change is performed in both directions. A controller tuned based on specification of L and T values becomes more conservative as T increases but also as λ increases, where:
and 0≦λ≦1. The system identification function of step 340 yields more reliable estimates of L+T (average residence time), but less reliable estimates of λ. Accordingly, in one embodiment, the maximum L+T value may be used in the tuning rule, but an average value of λ may be used to reduce the effect of a single unreliable estimate. The values used in the tuning rule for the delay, LR, and time constant, TR are thus calculated from the following:
LR={overscore (λ)}w max(L+T)
TR=max(L+T)−LR (42)
where {overscore (λ)}w is a weighted average that is calculated according to the weighted averaging procedure described below. Static non-linearity is not well characterized by capacity test 121 and any estimate of gain that is obtained from a 0 percent-100 percent step test may be lower than the gain exhibited in a low-load part of the range. Calculation of parameters for controller 202 from the 0 percent-100 percent gain estimate would therefore lead to overly aggressive or oscillatory control action in the high gain regions. Thus, in order to avoid the possibility of oscillatory response, a scaling factor may be introduced so that the gain used in the tuning rule is higher than the gain estimated from capacity test 121. For example, according to an exemplary embodiment, a scaling factor of 4 may yield satisfactory results across a range of different HVAC systems and may be applied to the average of the two gain estimates as follows:
KR=4{overscore (K)}w (43)
where {overscore (K)}w is a weighted average of the two gain estimates. If only one step is successful in capacity test 121, then LR=L, TR=T, and KR=4K are used in the tuning rule.
In quick tune test 122, the analysis assumes that the initial testing condition and step size are selected by the user to reflect where plant 204 will normally be operated. Quick tune test 122 may thus produce better estimates of the static gain for plant 204 than is possible in capacity test 121. Accordingly, a methodology similar to that employed in capacity test 121 may be used to determine the parameters for the tuning rule but with a less conservative scaling factor for the gain, i.e.,
LR={overscore (λ)}w max(L+T)
TR=max(L+T)−LR
KR=2{overscore (K)}w (44)
where the subscript w denotes weighted averages. According to an exemplary embodiment, a scaling factor of 2 may used for the plant gain estimate to provide satisfactory results for different systems. A smaller gain scaling factor may be chosen for quick tune test 122 than for capacity test 121 because the estimated gain from quick tune test 122 is more likely to be representative of the high gain operating region of plant 204.
In extended test 124, the FOPTD model parameters are estimated for each of several small steps across the range of input command signal R(s), thereby revealing both static and dynamic non-linearities. Accordingly, the highest static gain value established from the tests may be used directly in the tuning rule of Eq. (40) without applying a scaling factor. For the dynamic parameters, the same procedure is employed as in capacity test 121 and quick tune test 122, whereby the average λ value is combined with the largest residence time estimate. The tuning parameters are thus calculated as follows:
LR={overscore (λ)}max(L+T)
TR=max(L+T)−LR
KR=max(K) (45)
A simple average of λ is used for the results from extended test 124. The procedure above is applied to all successful steps in the extended test 124, and any failed steps in the sequence may be ignored.
In closed-loop test 125, the analysis assumes that the test is performed at or near the normal operating point of the plant, and controller 202 is tuned for the characteristics of plant 204 estimated in step 340 without the use of scaling factors. Additionally, because plant 204 is tested in closed-loop, the tuning of the initial controller will determine to what extent the range of U(s) is explored during each step change. U(s) may change in both directions for each change in setpoint and the static gain non-linearity may manifest itself in different ways in the parameters obtained from each step change. Furthermore, closed-loop plant identification is generally less reliable than open-loop due to lower information content in the signals. Accordingly, averaging of the parameters obtained from each step change is performed to provide the tuning rule inputs, i.e.,
LR={overscore (L)}w
TR={overscore (T)}w
KR={overscore (K)}w (46)
where weighted averages of all parameters are used in the tuning rule. No scaling factor is applied to the parameters, since it is anticipated that a user would wish to tune controller 202 as best as possible for the setpoints selected in the test. As with capacity test 121, in the case of one failed step change, the parameters from the successful step change are used directly.
In addition to the various adjustment procedures described above, a weighted averaging procedure may also be used in calculating the tuning parameters for controller 202. The algorithm used in step 340 is designed for application to plant 204 when it is in steady state at the beginning of a test. If plant 204 is in a transient condition when the test is started, the parameters estimated for the first step change may be corrupted. The degree of error in the parameters will depend on how far away the initial state vector is from its equilibrium point. The extent of any initial deviation from steady state conditions cannot be established without knowledge of the dynamics of plant 204, which are unknown at the start of a test.
Because the user may misinterpret the initial steady state condition, a lower level of confidence may be attributed to the parameters obtained from the first step change. According to one embodiment, this difference in confidence between step changes may be handled by using weighted averages rather than straight averages in analyzing the data for each step change. This is not a concern for extended test 124 because the parameters estimated for the first step are discarded. All other tests involve carrying out two steps and weighted averages are calculated according to:
{overscore (θ)}w=wθT (47)
where {overscore (θ)}w is the weighted average of a particular parameter (e.g., static gain), w is the two element weight vector, and θT=[θ1 θ2] is the two element parameter vector. According to an exemplary embodiment, the weight vector is set to wT=[ 1/4 3/4] so that the first test is only attributed a 25 percent weighting in the calculations.
Control loop auditing may also be performed as part of the analysis in step 350 because in many situations it may not be possible to obtain good results from controller 202 simply by re-tuning it. For example, plant 204 may be inherently difficult to control and not well-suited for controller 202. Accordingly, control loop auditing may be performed in order to establish whether there are fundamental problems within plant 204 that require remedial action.
According to an exemplary embodiment, control loop auditing may include generating an overall index value IDC at the end of each invasive test function 120 that relates to the difficulty in controlling plant 204 with a linear control law such as PID. In one embodiment, the overall index value IDC may be between zero and one, with one meaning that plant 204 will be difficult to control. According to this embodiment, the overall index value IDC may be established based on three sub-indices, including a time delay index ITD, a static non-linearity index ISN, and a dynamic nonlinearity index IDN. A hysteresis index IH may also be determined.
According to one embodiment, a delay index that may be calculated for plants characterized as FOPTD is given by:
where the denominator in Eq. (48) is the average residence time of plant 204. If λ is close to zero, the time delay is negligible relative to the average residence time and plant 204 will be easy to control. As λ tends toward one, plant 204 becomes a pure time delay system and poor results may be obtained from applying PID control. The time delay index ITD is calculated from a weighted average of the lambda values from all successful steps in a test, i.e.:
ITD═wλT; 0≦ITD≦1
where λT=[λ1(49) . . . λn]; n being the total number of successful step tests, and wT=[1 . . . 1] for the extended test and wT=[0.25 0.75] for all other tests.
The static nonlinearity index ISN may be calculated for more than two steps, such as for extended test 124. It is calculated as:
where 0≦ISN≦1. The index value is zero if there is no gain variation and tends toward one for significant variation. Zero values of gain are obtained in a test if there is some kind of failure, either due to malfunction of plant 204 or a failure of the parameter estimation algorithm.
Extended test 124 exercises plant 204 at strategically selected operating points and provides a sufficient characterization of gain variation. In closed-loop test 125, plant 204 is stepped between two user-selected setpoints. If plant 204 is non-linear, U(s) will cover different parts of the operating range for the step up and step down. Closed-loop test 125 thus provides some opportunity for establishing static non-linearity. In contrast, capacity test 121 and quick tune test 122 exercise plant 204 at exactly the same operating points in each step and would not reveal static non-linearity. However, if hysteresis exists in plant 204, this would get manifested in the gain estimations and in the index value.
As with static non-linearity, dynamic non-linearity directly affects the performance of PID control. Dynamics can change with operating point and with the direction of change in the output of plant 204. Because all of invasive test functions 120 involve stepping plant 204 in both directions, the dynamic nonlinearity index IDN may be calculated from all test results using the average residence time estimates as follows:
where 0≦IDN≦1. The index value is zero if there is no variation in the overall dynamics and tends toward one for significant variation.
The overall difficulty of control index IDC is a simple average of the indices described above and may be calculated from:
where 0≦IDC≦1 with zero indicating a linear and easily controllable plant and values greater than zero indicating non-linear plant characteristics and potential control difficulties. According to an exemplary embodiment, where the static non-linearity is high, a function may be calculated to cancel the non-linearity in feedback control loop 200, as will be described below.
Additionally, a hysteresis index IH may also be determined as part of control loop auditing in step 350. The difference in the two gains K1 and K2 estimated from hysteresis test 123 is proportional to the difficulty of control. Thus, the difficulty of control index due to hysteresis is calculated as:
where 0≦IH≦1. The hysteresis index value IH is zero if there is no hysteresis, and it is equal to one if the slack is greater than or equal to approximately 20 percent.
Hysteresis characterization may also be performed as part of the analysis in step 350. Hysteresis or backlash is a common problem for manipulated devices such as valves and dampers. Hysteresis is also referred to as “play” and “slack” in plant 204. The performance of feedback control loop 200 can be severely affected if a significant amount of slack is present in the manipulated device in plant 204. Thus, hysteresis test 123 is designed to estimate the amount of slack in plant 204. In hysteresis test 123, it is assumed that the maximum amount of slack is present in the middle of the range of U(s) (i.e., at 50 percent). Accordingly, hysteresis test is 123 designed to estimate the slack around this value.
In hysteresis test 123, U(s) is stepped from 40 percent to 60 percent in order to capture up to 20 percent slack in plant 204 and also reduce the inaccuracy in estimation of the FOPTD parameters due to noise.
Simplifying Eq. (54) results in:
Thus, the amount of slack x in plant 204 may be calculated using Eq. (55). If the actual amount of slack is greater than 0.2, then K2=0. Accordingly, the maximum amount of slack that can be detected in this way is 0.2. If the amount of slack is greater than 0.1, then it may adversely affect the performance of feedback control loop 200. Also, a large slack may produce inaccurate results for extended test 124.
Characterization and cancellation of static linearity in plant 204 may also be performed as part of the analysis in step 350. Static non-linearity is a common source of control problems in, for example, HVAC systems. The problem exists because most HVAC systems are controlled with PI or PID controllers, which are designed for constant gain systems. The performance of a fixed-parameter PI or PID controller will vary with the gain of plant 204. Feedback control loop 200 can become very sluggish or start oscillating when the gain of plant 204 changes significantly from the value that was used to tune controller 202.
Extended test 124 allows the static non-linearity of plant 204 to be assessed from the gain estimates that are made at different points in the range of U(s) in step 340. The results from extended test 124 may also be used to estimate parameters in a function that characterizes the normalized static non-linearity. The identified function can then be used in feedback control loop 200 to cancel excessive gain variations in plant 204 and allow more consistent control performance to be achieved without having to make any physical changes to plant 204.
Static non-linearity may be visualized by plotting the steady-state output of plant 204 against U(s).
In extended test 124, U(s) is stepped up from 0 percent-15 percent, 15 percent-60 percent, and 60 percent-100 percent of the range of U(s), and then down from 100 percent-85 percent, 85 percent-40 percent, and 40 percent-0 percent.
The normalized steady-state values of the output while stepping up (yiup) are then calculated from:
where, nup is the number of steps up. Similarly, for steps down:
Ideally, the sum of the gains for the steps up should equal the sum of the gains for the steps down and these should also equal the difference between y(0) and y(1). However, differences may exist either due to inaccuracies in the parameter estimation procedure or due to physical effects, such as hysteresis. Use of separate step up and step down summations prevents the possibility of fractional range values being outside of the zero to one range.
The inputs and outputs may be collected as:
Y=[yup ydn]
U=[uup udn] (60)
According to an exemplary embodiment, a plot of Y versus U may be generated so that the user can visualize the static non-linearity of plant 204.
The non-linearity depicted in
where ƒ is the estimate of fractional gain and β is a ‘curvature’ parameter such that as |β|→0 the relationship between u and y becomes linear. This function represents the exponential behavior found in many individual HVAC components quite well, but it does not model the more complex behavior found in subsystems that contain multiple components, such as actuator, valve, and heat exchanger combinations. For example, many systems may have ‘s’ shaped characteristics that are often the result of exponential-type behaviors acting in series.
where 0≦u≦1is u(t), (e.g., the time domain equivalent of U(s)) ƒ is the fractional gain, and x is an intermediate variable. Two exponential functions acting in series yield enough complexity to capture typical HVAC static non-linearity to a sufficient degree. Eq. (62) may only be solved when both β1 and β2 are non-zero, otherwise a linear relation should be substituted. According to an exemplary embodiment, a simplified expression that includes alternative functions for zero values of β1 or β2 is:
The function in Eq. (63) is fitted to the data points obtained from extended test 124. Data from the test are used to estimate the two parameters β1 and β2. The sum of the squares of the differences between the estimated and measured fractional gain values is minimized as given by:
The parameter estimates are the values obtained when S is at a minimum, i.e., [{circumflex over (β)}1 {circumflex over (β)}1]=min(S). Because a non-linear iterative search technique must be employed to estimate the optimum parameter values, it is important to start with an accurate initial estimate for the values. The reliability of the non-linear estimation process is influenced by whether the initial values are of the correct sign. According to Eq. (63) there are three possible cases:
In order to cancel the non-linearity of plant 204 in control loop 200, the inverse of Equation (63) is sought. The inverse function is given by:
Closed-loop response characterization of control loop 200 may also be performed as part of the analysis in step 350. Closed-loop test 125 involves performing two step changes in opposite directions to the controller setpoint signal R(s). The response of feedback control loop 200 is then characterized for each of the two step changes. The objective of the response assessment is to determine an index value that can be presented to the user that indicates how well feedback control loop 200 is tuned.
According to one embodiment, the closed-loop response of feedback control loop 200 may be characterized by modeling feedback control loop 200 as second order. Features may be extracted from the response of feedback control loop 200 and then related to the terms in the model.
where d0 is the size of the setpoint change and d1 is the magnitude of the overshoot as shown in
The fractional overshoot is related to the damping ratio ξ in a standard second-order model as follows:
Either the damping ratio or fractional overshoot can be used to express the aggressiveness of the control loop in a normalized way that is independent of information about plant 204. According to an exemplary embodiment, the fractional overshoot may be calculated from the minimum value of error signal observed during the test and the size of the step change according to:
where tstart is the start time for the test, tend is the end time, and Δr is the applied change in setpoint. An index that describes the degree of oscillation is:
where Io≦0
where η0 defines a limit on the overshoot so that feedback control loop 200 is considered too aggressive if η≧η0. According to an exemplary embodiment, a limit of η0=0.2 may be used so that an overshoot of more that 20 percent is considered unacceptable (i.e., yielding an index value of less than one).
Another index value Is may calculated that describes the sluggishness of the closed-loop response of feedback control loop 200. Because the parameters of plant 204 are estimated during closed-loop test 125, the degree of sluggishness may be calculated in one embodiment by comparing the response dynamics to those of the open-loop plant. For example, the area A in
where e(t)=r(t)−y(t) is the error signal calculated from the setpoint and controller variable. Since feedback control loop 200 cannot respond any faster than the time delay of plant 204, a minimum expected value for Tar,loop is L. An upper bound on Tar,loop defines the maximum tolerable sluggishness. According to one exemplary embodiment, an upper bound may be defined as the time delay plus a multiple of the plant time constant T. Since tend will be a finite value and the error signal may not have completely reached zero, the plant time constant T should be adjusted by integrating over the same interval as in Eq. (70), i.e.:
assuming (tend−tstart)>L
Making use of the upper and lower bounds, the sluggishness index Is may then be calculated as follows:
where Is≧0
where κ is a design parameter that determines when the sluggishness index Is equals the sluggish threshold (+1). The sluggishness index Is will equal zero when the response is as fast as the plant time delay. According to an exemplary embodiment, κ may be set to 2, which means that the closed-loop response must be slower than 2 times the open-loop response of plant 204 in order for feedback control loop 200 to be considered unacceptably sluggish.
In this way, the method of and apparatus for evaluating the performance of a control system provides automated standardized test procedures which may be carried out in parallel on multiple feedback control loops. Using the method of and apparatus for evaluating the performance of a control system enables a user to automatically assess the performance of a feedback control loop, such as a control loop in an HVAC system, by evaluating the control loop for hysteresis, static or dynamic nonlinearities, etc. Using the method of and apparatus for evaluating the performance of a control system further provides the user with an indication of the overall controllability of a plant or device being controlled. The method of and apparatus for evaluating the performance of a control system also allows a user to cancel the effects of static nonlinearity in a feedback control loop by outputting a mathematical function that can be added to controller that will cancel the non-linearity. This in turn makes the adoption of more rigorous commissioning and troubleshooting more practicable and less time consuming.
Non-Invasive Testing Functions
Referring again to
Load change detection test 131 uses a change detection function for detecting load changes in feedback control loop 200. The change detection function monitors the error signal E(s), where E(s) has an expected value of zero. The change detection function assesses the variability of error signal E(s) and calculates confidence intervals around the expected value of zero. A load change is then detected when error signal E(s) exceeds the limits.
An estimate of the lag-one autocorrelation is used as an indication of the extent of autocorrelation in error signal E(s). For a stationary Gaussian time-series, the lag-one autocorrelation may be estimated by counting the number of times E(s) crosses zero. The relationship between zero-crossings and lag-one autocorrelation is expressed through the following “cosine formula”:
ρ1=cos(πE[ƒzc]) (74)
where ƒzc is defined as the number of zero crossings divided by the total number of data samples minus one. Where E(s) is adequately described by an autoregressive AR(1) process, the lag-one autocorrelation value is sufficient to calculate the entire autocorrelation series because ρk=ρ1ρk−1 for k>1.
According to an exemplary embodiment, ƒzc may be estimated in an adaptive way so that it can track changes in signal properties over time. In this embodiment, ƒzc may be calculated from an exponentially weighted moving average (EWMA) of the number of samples between zero crossings. An EWMA of the number of samples between zero-crossings may be calculated from:
where nzc is the number of samples counted between zero-crossing events and {overscore (n)}zc is an unbiased estimate of the average of this quantity. W1 is the effective number of samples in the moving average window. Allowing the denominator in the update part to initially accumulate until reaching W1 causes the updating to begin as a straight averaging procedure. An estimate of the average zero-crossing frequency is then simply the reciprocal of {overscore (n)}zc, i.e.:
In one embodiment, because changes in autocorrelation may occur slowly relative to the loop time constant, W1 may be set to a large enough value to ensure statistical reliability.
The autocorrelation reduces the effective number of degrees of freedom in a data set. The number of samples over which autocorrelation persists, i.e. the de-correlation time, determines the effective degrees of freedom. Feedback control loops, such as feedback control loop 200, are ARMA processes wherein autocorrelation does not completely disappear due to the AR terms. According to an exemplary embodiment, a threshold may be selected that defines a period beyond which samples may be sufficiently de-correlated. In this embodiment, in order to estimate the effective degrees of freedom, error signal E(s) is modeled as an autoregressive AR(1) process. In the AR(1) process, past samples are weighted exponentially and the weight of a sample that is d samples old is ρ1d. A weighting value of K may be specified as a threshold and the number of previous samples with a weighting greater than the specified value may be calculated from:
According to an exemplary embodiment, a value of 0.05 is used for κ so that samples with weights less then 5% are considered sufficiently de-correlated. The effective degrees of freedom in a set of n samples of the correlated error signal is then:
where ν is the effective degrees of freedom.
The variance of error signal E(s) may be calculated from an exponentially-weighted mean-square where the EWMS is given by:
where s2 is an unbiased estimate of the variance. The window size for averaging is set to νW2, where W2 is the desired effective number of degrees of freedom, and the ν term thus extends the averaging window so that it includes the appropriate degrees of freedom given the estimated autocorrelation. As with Eq. (75), the EWMS is set up to begin as a straight averaging procedure until k saturates on νW2. Use of a moving average allows changes in signal variability to be tracked. According to an exemplary embodiment, the window size W2 may be selected based on the expected rate of change of noise properties. Typically, noise properties will not change very quickly relative to sampling rates and the window size in this embodiment may be set to a high enough value to ensure statistical reliability.
Once an estimate of variance is available, a statistical test is used in step 1820 to detect load disturbances based on the autocorrelation in error signal E(s) by determining a confidence interval for each zero crossing of error signal E(s). According to an exemplary embodiment, a logical null hypothesis is H0=μ=ek, where A is the population mean, which is equivalent to the expected value of zero for the error signal, i.e., μ=0, and ek is the value of a particular error signal sample. Alternatively, the hypothesis may be H1: μ≠ek. Since the variance is calculated as a moving average with a finite effective window size, the t-statistic is used to account for the finite degrees of freedom according to:
where s{overscore (e)},k is the estimated standard error of the population mean at sample k, which is calculated from the EWMS unbiased estimate of the variance as follows:
s{overscore (e)},k{square root}{square root over (sk2/1)} (81)
The denominator is one because only one sample ek is considered. The null hypothesis would then be accepted when:
where α is a specified alpha risk and the population mean value is set to zero. The number of degrees of freedom is determined from the effective number of samples in the EWMS statistic, such that:
Confidence limits may then be calculated about the expected error value of zero based on a specified alpha risk as follows:
CL1-α,j=±tα,ν
where j indicates a new zero-crossing event. The limits are updated each time a new zero crossing occurs and transgressions of limits that occur up to the time of the next zero crossing indicate that a load change or disturbance has occurred.
In step 1830, features from each load disturbance response (i.e., the error signal) between times of zero crossings are acquired.
Referring again to
The aggressiveness of a load disturbance response relates to how quickly a disturbance is rejected and the controlled variable is brought back to the desired setpoint R(s). Load disturbances are typically manifested as impulse responses on error signal E(s) whereby there will be a time to reach a peak value followed by a time to return to the desired setpoint R(s). According to one embodiment, the aggressiveness of a load disturbance response may be expressed as a ratio of these two times. The time after the peak will become smaller and get closer to the time before the peak as the feedback control loop becomes more aggressive. The amount of setpoint overshoot or undershoot that accompanies increased aggressiveness is dependent on the order of the feedback control loop, where higher-order systems will be able to return to setpoint faster with less overshoot than lower-order systems.
According to an exemplary embodiment, the aggressiveness of a load disturbance response may be calculated using the areas before and after the peak on a response that lies between zero crossings of error signal E(s).
In this embodiment, it is assumed that the control loop is adequately modeled as second order, and that, accordingly, the R index may be related to the damping ratio in the second order model thereby allowing comparison with realistic performance levels.
According to an exemplary embodiment, the damping ratio ζ may be determined using a second order model of feedback control loop 200. According to this embodiment, a second order model of feedback control loop 200 may be determined by assuming that controller 202 is an integrator and that plant 204 is first order such that:
Based on the above definitions, the transfer function for a setpoint change is:
and for a load change:
For a load change, the transfer function may be specified in terms of the error signal, which is the difference between the setpoint and controlled variable, i.e., E(s)=R(s)−Y(s). Gl(s) is the loop transfer function, which is the product of the controller and plant transfer functions, i.e.,
Gl(s)=Gc(s)Gp(s) (89)
Load changes can be modeled as steps acting on the plant input yielding the following expression for error signal E(s):
Error signal E(s) has the three following time-domain solutions: For 0≦ζ<1 (under-damped):
For ζ=1 (critically-damped):
e(t)=ωn2t exp(−ωnt) (92)
For ζ>1 (over-damped):
where β1={square root}{square root over (1−ζ2)} and β2={square root}{square root over (ζ2−1)}.
Since there are three types of load response there are also three different expressions for the areas. These three results are shown below where AT is the total area from the start of a response to the point where the response crosses zero, for the under-damped case, or when t→∞, for the critically- and over-damped cases. An is the area under the curve from the beginning of a response to the time when the peak occurs. Ap is simply AT minus An. K is the magnitude of load change, which is unknown. For 0≦ζ<1 (under-damped):
where
For ζ=1 (critically-damped):
AT=K (96)
An=K[1−2exp(−1)] (97)
For; ζ>1 (over-damped):
AT=K (98)
Calculation of the R index for all cases cancels K and leaves only a function of the damping ratio given by:
A value for R can be algebraically determined at the point of critical damping when ζ=1 such that:
The critically damped value of R represents a realistic benchmark for most practical systems. According to one embodiment, R values may be converted to corresponding damping ratios in order to provide a more standardized measure of controller aggressiveness according to the following third-order polynomials:
where z=ln(R).
The natural frequency ωN is also determined in step 1840 as a second order parameter. According to an exemplary embodiment, the parameters ep, Tp, An, and Ap may be used to calculate ωN for critically-damped, over-damped, and under-damped load disturbance responses. For ζ=1 (critically-damped):
For ζ>1 (over-damped):
where ep is the peak value of the error signal.
For the under-damped case, the area under the response is dependent on the number of times error signal E(s) has crossed zero following a disturbance. According to an exemplary embodiment, use of Tp from step 1830 allows the natural frequency to be calculated as follows for 0<ζ<1 (under-damped):
where Tp is the time between a peak and the next zero crossing.
Referring again to
The reciprocal of the transfer function for a PI controller is:
The transfer function for plant 204 is given by:
which simplifies to:
For ζ>0, use of PI control law yields a second order plant having negative real poles. When ζ=0, one root disappears, making it possible to characterize plant 204 by two parameters rather than three. According to an exemplary embodiment, the second order model in Eq. (109) may be converted into the FOPTD form as defined by:
According to this embodiment, the following identities may by used to achieve a mapping between second order and FOPTD model parameters:
Using the above identities for the plant transfer function defined in Eq. (109) the following expressions may be obtained:
The expressions above allow the three parameters in the FOPTD model to be calculated from the second order loop transfer function and controller parameters when ζ>0. As ζ→0, the static gain tends to infinity as one root disappears in Eq. (116). According to an exemplary embodiment, it may be assumed that plant 204 is FOPTD where the root in the first-order lag part is the known root in Eq. (109). The transfer function of feedback control loop 200 may then be expressed as:
The plant pole is cancelled by the integral action of controller 202 and the transfer function of feedback control loop 200 becomes an integrator and time delay in series with a proportional action controller. From Eq. (116), the frequency response is:
According to an exemplary embodiment, it may be assumed that the phase and magnitude are at the critical point, i.e., where Gl(iω)=−1. The proportional gain value that leads to the loop being at the critical point may be referred to as the ultimate gain Ku, and ωu is the corresponding ultimate frequency, where:
The damping ratio does not appear in the equations and the three parameters in the FOPTD plant model may be resolved from the natural frequency (which is equivalent to the ultimate frequency when sustained oscillations occur) and the two PI controller parameters according to:
Obtaining a plant model from closed-loop data enables plant performance monitoring and fault detection, and allows calculation of new controller parameters. Isolation of a plant model may also simplify the problem of plant performance monitoring and fault detection. Identification of a plant model also facilitates calculation of controller parameters when closed-loop behavior is unsatisfactory. Accordingly rather than just auditing closed-loop performance, the proposed method also allows identified tuning problems to be rectified.
Referring again to
where I(t) is the integral of error signal e(t) at time t. The integration function of Eq. (123) reduces the impact of high frequency noise in error signal e(t) on the number of zero crossings in error signal e(t) such that only zero crossings due to oscillations remain.
In step 2220, a running mean of the integrated error signal of Eq. (123) is calculated and reset each time the integrated error signal I(t) crosses it. The running mean is calculated as an estimate of the expected value of error signal e(t). because the expected value of the integrated error signal I(t) of Eq. (123) is no longer zero, and this impacts the determination of a “zero crossing” for error signal e(t). Because the expected value can change, the running mean is reset every time the integrated error I(t) crosses it. The average value of the integrated error signal I(t) up to time t between zero-crossings is:
where tj and tj+1 are times of successive zero crossings. In discrete time, a running average may be calculated from:
where j>0 is now the number of samples since the last zero-crossing and k denotes sample number.
In step 2230, the difference between the running mean and the integrated error I(t) is calculated, and an area value is defined as the integral of the difference between the times of zero crossings. By defining the error between the running average and the actual value as:
EI(t)={overscore (I)}(t)−I(t) (126)
a zero crossing of the integrated error signal then occurs when EI(t) crosses zero. A new area quantity can then be calculated from EI(t) such that:
where tj and tj+1 are now times of successive zero crossings of EI(t).
Referring again to
where 0≦S(.)≦1 is the similarity index value.
In step 2250, the EWMA of the similarity index is updated. According to an exemplary embodiment, the average similarity index value may be calculated over a window of samples in order to test for an oscillating condition. According to this embodiment, an EWMA may be adopted so that:
where {overscore (S)}k is the EWMA of the similarity index taken over an effective window size of W3 pairs of alternate area values. Because of noise and other effects such as non-linearities, the similarity index will be unlikely to have an asymptotic value of unity for oscillating changes. Thus, according to an exemplary embodiment, {overscore (S)}k may be compared against a near-unity threshold to detect oscillations. The choice of threshold will affect the sensitivity of the detection method. Another factor that will affect sensitivity is the size of the averaging window, which may be determined by the W3 parameter in Equation (129). For random changes, runs of near-unity similarity index values will occur, but the probability decreases with increasing run length. Accordingly, increasing the window size W3 will reduce the chance that the {overscore (S)}k value will approach unity for random changes, but will also make it slower to respond to real periodic changes. According to an exemplary embodiment, suitable values may be obtained empirically by testing the procedure with real data, such as data from non-linear, noisy, and oscillating control loops in buildings. For example, in one embodiment, satisfactory sensitivity may be obtained when the threshold on {overscore (S)}k is 0.75 and W3. The frequency of oscillations is easily ascertained from the time between zero-crossing points of EI(t).
In step 2260, an oscillatory condition is signaled to the user if the EWMA exceeds the threshold, and the natural frequency is calculated from the time between crossings of the integrated error I(t) and the running average. In step 2270, an FOPTD plant model is calculated when the second order parameters have been estimated and existing controller settings are known, which is similar to step 1850 shown in
In this way, the method of and apparatus for evaluating the performance of a control system provides not only invasive testing techniques, but also non-invasive testing techniques which do not disturb normal operation of the control system. The method of and apparatus for evaluating the performance of a control system also requires no prior information about a particular feedback control loop.
It should be understood that the construction and arrangement of the elements of the exemplary embodiments are illustrative only. Although only a few embodiments of the present invention have been described in detail in this disclosure, many modifications are possible without materially departing from the novel teachings and advantages of the subject matter recited in the claims. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. Unless specifically otherwise noted, the claims reciting a single particular element also encompass a plurality of such particular elements. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and/or omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the spirit of the present invention as expressed in the appended claims.