This invention relates to a method of and an apparatus for separating nucleons from atomic nuclei of CO2 gas.
The inventor of this application has been developing a method of taking hydrogen out of water, in which a reaction agent is supplied into a sealed vessel as a reactor made of stainless steel, and the reactor is heated at a temperature of 500° C. to 600° C. The reaction agent comprises sodium hydroxide or potassium hydroxide and is heated so as to disperse the fine particles of the reaction agent into a reaction cylinder so that the particles collide with the molecules of water to separate hydrogen from oxygen.
In the above patent publications 1 and 2, hydrogen can be separated from water, gaseous oxygen is not discharged together with hydrogen, but remained in a reactor as oxide. Further, hydrogen comes out more than the amount of hydrogen included in water supplied thereinto. However, the reasons for these phenomena are not disclosed.
And, sodium hydroxide (NaOH) or potassium hydroxide (KOH) is used as catalyst or reaction agent which includes the ingredient of oxygen. Therefore, at the step of preparation of the reactor, even if the reactor is heated after it is made a vacuum, a little oxide is remained in the reactor to decrease a reaction efficiency and the life span of reaction. In addition, the principles of reaction are not explained efficiently, and there is a problem when it is practically used.
The subject of this invention is solved by a method having the steps of: ejecting the first electromagnetic waves with a plurality of different frequencies by heating a reactor wall made of material having heat resistance and conductivity; supplying amplification material for amplifying the energy of the first electromagnetic waves into the reactor; vaporizing the amplification material under the cooperative influence of the first electromagnetic waves with the amplification material itself which is then changed into fine particles; ionizing the fine particles to form a plasma apace; radiating the first electromagnetic waves to the fine particles to emit the second electromagnetic waves having amplified energy; and separating nucleons of a gaseous element under the cooperative action of the second electromagnetic waves with gas fed into the reactor to be treated therein.
Further, the reactor is made of stainless steel or iron, and the amplification material comprises at least one of alkaline metals such as lithium, sodium or potassium or the fluoride of those elements.
As the gas to be treated, carbon dioxide is chosen.
Furthermore, as the amplification material, sodium or potassium with stainless powder or zinc powder is preferable.
Further, a portion of the reactor for accommodating the amplification material is heated at a temperature of 400° C. to 600° C., and, further, the plasma space is preferably maintained in a state of air-cooling to keep it at a temperature of 200° C. to 300° C.
An apparatus for plasma reaction of this invention comprises: a reactor made of material having heat resistance, corrosion resistance and conductivity and emitting the first electromagnetic waves with a plurality of frequencies from a reactor wall to be heated; amplification material made of at least one kind of alkaline metals which are accommodated in the reactor to amplify the energy of the first electromagnetic waves by the interaction between the amplification material and the first electromagnetic waves to emit the second electromagnetic waves; and a heating device for heating the reactor to vaporize the amplification material and to emit the first electromagnetic waves from a reactor wall thereby to form a plasma space, nucleons being separated from the nuclei of the atoms in gas supplied into the reactor to be treated.
Further, the reactor is made of stainless steel or iron material, and the amplification material preferably comprises at least one kind of alkaline metals with stainless steel powder, iron powder or zinc powder.
Furthermore, the heating device preferably has an inner heating cylinder disposed in the reactor, and hydrogen produced in the reactor is fed into a burner in the inner heating cylinder to heat it.
Furthermore, the reactor has a air-cooled portion and a heated portion, and the plasma is formed corresponding to the air-cooled portion.
Furthermore, a carbon layer is attached to the inner wall of the reactor.
Furthermore, the heating device preferably has an inner heating cylinder, and a plurality of cylindrical cassettes including the amplification material therein are disposed between the inner heating cylinder and the main body of the reactor to form paths for the gas to be treated.
A sealed reaction cylinder (reactor) without the inflow of air (oxygen) is made of iron or stainless steel material (austenite crystal structure including nickel is preferable), and an energy amplification material is supplied into the inside of the reactor to amplify the energy of electromagnetic waves emitted from the wall of the reactor, and, further, the energy amplification material comprises alkaline metal or alkaline fluoride. When the reactor is heated at a temperature above 400° C., metal crystal lattices in the wall of the reactor oscillate, and electrons also oscillate to generate electromagnetic waves having wave lengths peculiar to the metal. Interaction between the electromagnetic waves and the amplification material partially occurs to generate a high temperature portion thereby to vaporize the amplification material, so that light fine particles are dispersed in the reactor. These fine particles have the same function as that of generating energized laser beams and interact with the electromagnetic waves emitted from the reactor wall to induce-emit the energized second electromagnetic waves.
When CO2 gas is fed into the reactor to be close to the fine particles, the second electromagnetic waves enter the nuclei of the atoms of the gas to interact with gluons which are one kind of gauge elementary particles and are the source of nuclear force thereby to obstruct or recover instantly the exchange of color charge because both of the electromagnetic waves and gluons are wave motion.
In this manner, the nuclear force between a proton and a proton, between a proton and a neutron and between a neutron and a neutron is cut at a certain possibility or percentage, and especially in the case that the nuclear force between a proton and a proton is cut, the proton coming out of a nucleus with a repulsive force on the basis of an electromagnetic force to form a hydrogen gas atom by uniting with an electron.
Since the reactor is made a vacuum at its preparation step, there is no oxygen ingredient not to form an oxide layer in the reactor at all which has a fear to absorb the first electromagnetic waves emitted by a heat lattice oscillation on the reactor wall. On the basis of “law of conservation of energy” with respect to elementary particles, the theoretical energy level of the first electromagnetic waves is not limited for an extremely short time in spite of the level of a theoretical energy of a heat oscillation. That is, its energy level has a possibility to go up to a level more than the level on the basis of the heat oscillation. Further, there may be a certain possibility that the energy of the second electromagnetic waves is higher than a theoretical value produced by a reaction between the first electromagnetic waves and the amplification material, and the second electromagnetic waves cut the nuclear force instantly (e.g., time of 10<−10> second) to separate nucleons from a nucleus. Accordingly, protons and neutrons are separated from carbon dioxide in which molecules move freely to make it harmless and to prevent the global warming. In addition, tritium water generated in an atomic reactor can be made harmless by removing neutrons from protons in a nucleus. Further, as hydrogen is produced from nitrogen, a hydrogen electric power generation is possible all over the world (especially on desserts), and burning of hydrogen can produce electric power and water to contribute to afforestation of desert.
The embodiments of this invention will now be explained with reference to the drawings.
In
The lower half circumferential portion is surrounded by a platelike heating device (heater) 72 which can heat the reactor 70 at a temperature of 400° C. to 700° C. A supplying pipe 73 is provided on the upper surface of the reactor 70 to supply gas thereinto, and extends into a plasma space 74 formed at the upper half portion of the reactor 70 so as to open to the space 74. And a discharging pipe 75 is also provided on the upper surface of the reactor 70 to discharge the gas produced in the plasma space 74. An emitting supplementary body 76 is disposed at the bottom portion of the reactor 70 and has a plurality of emitting plates 80, 80 . . . 80 to increase electromagnetic emitting area, and, further, amplification material for amplifying the energy of the electromagnetic waves is accommodated together with the body 76. The emitting supplementary body 76 is made of the same material as the reactor 70. Instead, powder of the same material, e.g., iron or stainless steel powder of approximately 70 pm can be used.
As the amplification material 77, at least one of alkaline metals (lithium 7), sodium (Na) and potassium (K) can be used. Instead, fluoride (LiF, NaF, KF) of alkaline metals can be used. In the case that stainless, iron or zinc powder is added to those alkaline metals, a reaction efficiency increases.
Each electromagnetic amplification material has one electron on the outermost shell and is chemically active. If it is heated, electrons on inner shells easily jump up to one of outer shells. Further, these metal elements and those fluorides have relatively low melting points (Li: 180° C., Na: 98° C., K: 64° C., Lif: 460° C.) so that they are easily changed into liquid by heating them. For example, if the amplification materials are heated at a temperature above 400° C., they go up to a high temperature by their energy amplification function and by molecular heat oscillation to produce fine particles which are dispersed to fill the plasma space 74 therewith.
On the contrary, the metal material in the wall of the reactor has, as shown in
Such a lattice structure emits electromagnetic waves having characteristic frequencies with respect to the lattice. These electromagnetic waves correspond to a cavity radiation in the reactor, and as shown in
In the case that sodium (Na) is used as amplification material, sodium is melted and liquidized at a temperature below 100° C., and, as shown in
As a result, it is vaporized to produce fine particles which are dispersed in the plasma space 74. In these fine particles, as shown in
As mentioned above, in order to separate protons or neutrons from a nucleon, energy above the nuclear force (corresponding to binding energy) of a nucleus must be given to each nucleon. With respect to the generations of the first and second electromagnetic waves, as shown in
With reference to
In this invention, since the exothermic reaction balances with the endothermic reaction, the reactor can be operated safely. That is, if the separation of protons only occurs, a remarkable endothermic reaction only occurs so that the temperature of the reactor drops at the absolute temperature 0° to stop the reaction. If the exothermic reaction only occurs, the reactor wall is instantly melted to stop the reaction. In this invention, the probability of the endothermic reaction balances almost with that of exothermic reaction, and, however, it is preferable that the possibility of endothermic reaction is slightly larger than that of the exothermic reaction in view of safety of the reactor. In this manner, the two reactions continue safely, and there is little such a danger that neutrons jump out of the reactor. At the time of experiments, a device for measuring neutrons was always disposed near the reactor 70, and, however, there was not fact that the device detected distinctly the neutrons.
The vertical type of reactor is operated as mentioned above, and a lateral type of reactor can be also operated in the same manner as shown in
A heater 106 as an inner device is accommodated in the heating pipe 105 to heat the inside of the body 101. In addition, the outer circumferential wall positioned at the left half portion of the body 101 is covered with a plate-like heater 107 as an outer heating device to form a heating portion. The right half portion of the body 101 is exposed to the atmosphere to be coaled to form a cooling portion which corresponds to a plasma space 108. A case 109 for accommodating amplification material is mounted on the lower surface of the left half portion of the body 101, and metal lithium, sodium, etc., as the amplification material re accommodated in the case 109. In the case that the reactor 100 is heated by both heaters 106 and 107, the fine particles of the amplification material are sufficiently dispersed to fill a plasma space therewith thereby to ensure a phase transition in the cooled reaction space.
The inventor of this invention has been making experiments for eleven years, and the kind of experiments and opinions on the basis of each experiment will now be explained.
1. An Experiment with Respect to the Kind of the Material of the Reactor
NaOH was conventionally used as the amplification material. The reactor can be made of ceramic, copper, nickel, iron or SUS304, 310, 306, SUS materials were preferable, and ceramic, copper or nickel material were not preferable to produce hardly hydrogen from water supplied into the reactor. In SUS materials, SUS304 or 306 having a austenite crystal structure was preferable, and SUS material of ferrite crystal structure was inferior. Further, the reactor made of iron had a good reaction, and, however, the reaction did not continue for a long time. At first, NaOH was used as the amplification material, and alkaline metal itself without the ingredient of oxygen is used in view of the prevention of oxidation.
2. An Experiment with Respect to the Kind of the Amplification Material
At first, stainless steel piece (SUS304) with sodium hydroxide (NaOH) or potassium hydroxide (KOH) were used to take hydrogen out of supplied water, and instead of these materials, sodium titanium oxide (KTiO2) or potassium titanium oxide (NaTiO2) was used to take hydrogen from water. On the contrary, a reactor of SUS304 without the amplification material could produce a slight amount of hydrogen from water. However, the reactor had to be heated at a temperature above 650° C. in order to produce a sufficient amount of hydrogen. In addition, it was clearly confirmed that a reactor of SUS304 accommodating only NaTiO3 or KTiO3 therein was simply heated at a temperature above 500° C., so that hydrogen continued to be produced for long hours (almost one week). The reactor was heated, before the experiment, at 600° C. for several hours to discharge outside hydrogen included in a reactor wall. In the case of sodium titanium oxide, a plasma atmosphere (Na<+>, Ti<3+>, O<2−>, electron e<−>) was formed over the surface of the amplification material by its heated oscillation to separate protons from at least one of these ions. There is a high possibility that hydrogen is produced from oxygen having the smallest bounding energy among these three ions.
3. An Experiment with Respect to the Condition of the Plasma Space in the Reactor
When Na was used as the amplification material and a kind of gas such as nitrogen or argon was fed into the reactor, a flame reaction of Na could be conspicuously observed. The flame reaction means that a lots of Na fine particles were flying in the plasma space of the reactor. When the reactor was disposed in an insulated state, it could be confirmed that there was a potential difference between an outer side surface, corresponding to the plasma space, of the reactor and the ground, and the reactor space was filled with electrons. Further, two reactors were, as shown in
4. An Experiment with Respect to the Optimum Position of the Plasma Space
In the case that, in a vertical type of reactor as shown in
5. An Experiment with Respect to an Action of Nucleons at a Time of Reaction
In the case that sodium hydroxide and some stainless steel pieces were accommodated, as the amplification material, in a reactor made of stainless steel, and heavy water (D2O) was supplied thereinto while heating it by an inner heater, the heavy water was almost changed into H2 gas so that D2 gas disappeared. Analysis of a reactor wall piece showed that some isotopes had more neutrons than normal isotopes. Especially, the phenomenon was remarkable in the case of Fe isotopes. It seems that the neutrons were absorbed in each metal of the reactor.
In addition, in the case that tritium water (T2O) is supplied instead of D2O, tritium above 70 percent disappeared. This result proved to be true by measuring the amount of β-rays. It seems that neutrons were separated from nuclei also in this case.
6. An Experiment with Respect to the Energy of the Generated Electromagnetic Waves
As shown in
Next, a hydrogen power generation system including a plasma reaction apparatus of this invention will now be explained. A hydrogen power generation system has, as shown in
The reactor 1 has a main body 4 made of stainless steel (SUS304,310,316: austenite is preferable) in which the left end of an inner heating cylinder 5 for heating the inside of the body 4, and the left end of the body 4 are supported by a fixing flame 6. The heating cylinder 5 has a double-structure which comprises an outer cylinder 5a and an inner cylinder 5b. A burner 7 is set on the side of the fixing flame 6 of the inner cylinder 5b which is open on the opposite side thereof (forward end), and the combustion gas from the burner 7 is turned back along the forward end surface (right end) of the closed outer cylinder 5a to be fed into a path 11 through a discharging space 8 formed between inner and outer cylinders 5a and 5b. Hydrogen gas is supplied in the burner 7 through a path 9 of the fixing flame 6, and oxygen gas is supplied therein through a path 10, and both gases are burned by the burner 7 to produce steam of a high temperature which passes through the inner cylinder 5b and is returned back at its forward end to come to a path 16 through the path 11. The steam from the path 17 rotates a steam turbine of a known power generation device 12 to generate electric power. After this, the steam is changed into water by a condenser 13 through a path 17 to be stored in a water tank through a path 18.
A case 15 is accommodated at the lower portion of the body 4 of the reactor 1 as shown in
The heating cylinder 5 is made of heat resistance ceramic so that the outer lower surface of the outer cylinder 5a contacts directly with the amplification material R to heat it.
The amplification material R is changed into fine particles to form a plasma atmosphere which can produce H2 gas from carbon dioxide (CO2) in the same manner.
Next, another embodiment is shown in
Further, the amplification material R is ejected by an ejecting pipe 44 to increase a contact efficiency with nitrogen gas. In addition, the center portion of the main body 4 is heated by a hater 40.
Next, an embodiment in which the amplification material is easily changeable by designing it in the form of cassette will be explained.
In
Each cassette cylinder 50 is made of stainless steel (SUS310, SUS316), and the amplification material R is hermetically accommodated therein.
As the amplification material, powder of SUS, Fe or Zn is preferably added to Na, K or Li of alkaline metal. Instead of each alkaline metal, NaH (sodium hydride) can be used. A carbon layer 62 is formed on the inner wall of the cassette cylinder 50, while the powder of radium or polonium emitting a-waves is applied to the outer circumferential surface thereof with a binder or the powder is thermally sprayed thereby to form a a-wave layer 60. And a similar a-wave layer 61 is formed also on the outer circumferential surface of the heating cylinder
A vacuum is formed in the cassette cylinder 50 by a vacuum pump 63 (
According to this invention, an electric power generation can be done from air without discharging carbon dioxide in addition to the production of water. Accordingly, the electric power generation can be done all over the world, and this invention is the most optimum means for afforestation of dessert due to the production of water. Further, conventional fuels can be used because carbon dioxide discharged on the earth can be changed into hydrogen.
Number | Date | Country | Kind |
---|---|---|---|
2019-058416 | Mar 2019 | JP | national |
2020-051098 | Mar 2020 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 17442819 | Sep 2021 | US |
Child | 18229261 | US |