Not applicable
Not applicable
This invention relates to beverage service equipment. Specifically, this invention relates to beverage containers designed to allow fluids to be introduced through the bottom of the beverage container rather than through the main opening (mouth) of the beverage container, and to the associated interfacing and fluid-feeding hardware.
Conventional methods of dispensing and serving beverages have historically relied on the introduction of liquids through a main opening (mouth) in the top of the container, above the plane of the free surface of the full liquid volume. As beverage service has become more specialized, shortcomings in traditional methods of beverage dispensing have become apparent.
In retail and foodservice settings, beverage dispensing hardware has become ubiquitous. Traditional soda fountain machines occupy a considerable amount of countertop area, and usually occupy a high vertical profile in order to accommodate internal plumbing and in order to accommodate the full height of a cup under a fill nozzle. Goepfert (U.S. Pat. No. 7,086,566) addresses the issue of high-profile beverage dispensers by placing some of the hardware under a counter, but a large vertical profile is still required above the counter to accommodate the height of a glass. Farkas (U.S. Pat. No. 5,044,171) similarly places components under a countertop, but a tall profile remains above the counter.
Other methods for eliminating large beverage hardware have been invented. A multitude of inventions, such as Reichenberger's (U.S. Pat. No. 4,162,028) and Kado's (U.S. Pat. 7,311,266) have centered on gun-based beverage dispensers. While these dispensers eliminate large-profile hardware from the bartop, the dispensing heads tend to be fragile, droppable, and operable only by bartenders as opposed to by end consumers.
As a result of the large space requirements and fragility of much beverage dispensing hardware, certain potential markets have been completely ruled out. For instance, beverage dispensers are not installed on cinema seat armrests due to the large physical bulk of present beverage dispensing hardware.
Where conventional soda fountain and post-mix machines are not in use, considerable countertop and shelf space is often dedicated to the storage of bottles instead. Regardless of the means, conventional beverage dispensing can be highly inefficient in its use of space.
The flow regimes of dispensing beverages into containers is likewise an area of development. Certain beverages, especially carbonated beverages, benefit from specialized flow regimes during dispensing, either to encourage or mitigate the formation of froth.
For instance, some beverages suffer from an excess accumulation of froth upon dispensing into a conventional beverage container because of turbulent mixing associated with a jet of liquid impinging on a free surface. This shortcoming has been addressed by Younkle (U.S. Pat. No. 7,040,359) simply by retrofitting an existing beverage dispenser; however, said apparatus must protrude into the dispensed beverage, causing potential sanitary issues and impeding access under the tap. Nelson (U.S. Pat. No. 6,397,909) also addresses froth formation, but his design poses similar sanitary and access issues. For other types of beverages, froth is desired. Jamieson (U.S. Pat. No. 5,203,140) addresses controlled froth generation, but his approach requires a lid independent of the beverage container, which in turn requires cleaning.
As beverage service has found new physical settings, conventional hardware set has shown corresponding shortcomings. For instance, in-flight beverage service on airliners requires the flight attendant to hold a bottle above a cup steadily enough to prevent spillage, often while contending with a jerky ride. Nybakke et al. (U.S. Pat. No. 6,234,364) propose several improvements, but the issue of relative inertial motion between pouring container and cup still remain unresolved. Filling cups while standing in a moving aircraft requires considerable skill and practice.
Mixing beverages requires the use of specific hardware, such as stirring sticks, spoons, and shakers. These methods of agitation increase the total number of implements necessary to prepare a mixed beverage, in addition to generating trash or dirtying silverware. While prior inventions sought to address these shortcomings, these methods suffer from cross-contamination issues, excessive complexity, or requiring that a specialized piece of hardware be installed on a countertop. Daniels, Jr. (U.S. Pat. 6,527,433) discloses a beverage mixing apparatus which not only requires dedicated countertop space, but also which requires cleaning after each use to prevent cross-contamination. Bhavnani (US Patent 20060126431), Rubenstein (US Patent 20010036124), Schindlegger Jr. (U.S. Pat. Nos. 5,911,504 and 5,720,522), Sampson (U.S. Pat. No. 5,425,579), and Calhoun et al. (U.S. Pat. No. 4,435,084) all propose beverage containers with integral moving agitators, which are subject to wear, breakage, and difficulty in cleaning.
Cuthbertson et al. (U.S. Pat. No. 6,471,390) propose a gas based mixing scheme integrated into a mug. However, moving parts are again subject to wear and difficulty in cleaning. Furthermore, manual pumping actuated on the handle of a container may be difficult to achieve while simultaneously holding the beverage container and preventing spillage.
Previous inventions have incorporated means of outflow mitigation into beverage containers, but none for the express purpose of filling the beverage container. De Sole (U.S. Pat. No. 3,355,047) discloses a system of outflow mitigation into the bottom of a baby bottle, but for the purpose of pressure equalization in a closed volume. Likewise, Flinn (U.S. Pat. No. 5,433,353) discloses a water bottle fitted with a check valve at its bottom, for the purpose of pressure equalization and flow control out of the bottle. Manganiello et al. disclose a similar arrangement (U.S. Pat. No. 7,163,113 B2). Cuthbertson et al. (U.S. Pat. No. 6,471,390) include a poppet valve in a beverage container, but for the purposes of preventing liquid uptake into an air-handling system. A multitude of inventions include check valves on their lids for the purposes of spill prevention: Manganiello (U.S. Pat. Nos. 6,050,455 and 6,422,415), Belcastro (U.S. Pat. Nos. 5,890,620 and 6,276,560), and Bunn et al. (U.S. Pat. No. 7,222,759).
In conclusion, insofar as the inventors are aware, no system of dispensing beverages formerly developed provides a method of filling beverage containers from the bottom up in order to prevent spillage, control the formation of froth, save countertop space, and facilitate mixing.
Embodiments of the present invention address at least some of the drawbacks set forth above. In one embodiment, the present invention comprises of two parts: a beverage container (especially a glass) with an open top, a hole or permeable material penetrating through the bottom or sidewall of the beverage container, and a means of outflow mitigation (usually a one-way valve); and a mating fluid delivery assembly, which forms a seal to the beverage container and provides a pressurized flow of fluid which passes through the beverage container's hole or permeable channel and fills the beverage container. The hole or permeable channel may be engineered specifically to either promote or mitigate foaming. Embodiments of the present invention may provide a method of filling beverage containers from the bottom up in order to prevent spillage, control the formation of froth, save countertop space, and/or facilitate mixing.
The means of outflow mitigation of the beverage container may or may not be a one-way valve, which allows flow into the bottom of the beverage container, but not out of the bottom of the beverage container. One-way valves of the duckbill, umbrella, and poppet types are all examples of suitable means of outflow mitigation. If not a one-way valve, the beverage container's valve must be both normally closed and actuable from the mated position; certain spring-loaded and mechanical valves may be employed to such effect. In order to fill a beverage container with such a valve, the valve must be actuated open when filling is initiated.
In addition to forming a seal and providing a path for pressurized fluid, the fluid delivery assembly may also incorporate an upstream valve mechanism, which is actuated in order to initiate filling. The fluid delivery assembly can be fitted with an electrical valve mechanism for electronic actuation, a mechanical valve mechanism for manual actuation, a pneumatic valve mechanism for pneumatic actuation, or any other means of initiating pressurized fluid delivery. If the fluid delivery assembly is not fitted with a valve mechanism, provisions must be made in the upstream fluid plumbing to modulate fluid flow on and off.
As an alternative embodiment to a valve in the beverage container, the container could incorporate a weir or perforated tube which accepts flow from the fluid delivery assembly beneath the beverage container and dispenses the liquid above the filled free surface height in the beverage container. In this case, geometry mitigates outflow of fluid out of the weir and back out the bottom of the beverage container.
It is possible that the permeable material and the means of backflow prevention are achieved with the same, single piece of material. In this embodiment, the beverage container includes a hole distinct from the beverage container's mouth. The hole is filled with a fine porous material, such as sintered stainless steel. With the porosity of this material selected correctly, fluid coming from the fluid delivery assembly can be pressurized sufficiently to flow through the permeable material; however, the small hydrostatic pressure of the fluid at the bottom of the beverage container is insufficient to allow appreciable flow back out the bottom of the beverage container.
As a means of mixing beverages contained in said beverage container, gas-phase fluids (such as nitrogen or carbon dioxide) can be introduced through the fluid delivery assembly, using bubble-induced turbulent mixing to stir beverage components together. By flowing gas bubbles through a beverage, more effective mixing can be effected than with conventional stirring hardware. In addition, the need for a clean or disposable agitator is eliminated.
A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.
11 beverage container
12 outer elastomeric o-ring seal
13 fluid delivery assembly main body
14 vacuum pressure feed-in
15 pressurized fluid feed-in
16 vacuum gage attachment point
17 inner elastomeric o-ring seal
18 perforated stopper with mount holes for an umbrella check valve, which hermetically mates with the beverage container through an interference fit
19 umbrella check valve
20 interior volume of beverage container
25 beverage container mated to fluid delivery assembly, as installed in a countertop
26 fluid delivery assembly main body, as installed in a countertop
27 liquid leakage catch bowl
28 countertop
30 beverage container
31 fluid delivery assembly main body
32 pressurized fluid feed-in
33 sealing boss integral with fluid delivery assembly main body
34 elastomeric one-way duckbill valve
35 interior volume of beverage container
40 fluid delivery assembly main body
41 pressurized fluid feed-in
42 sealing boss integral with fluid delivery assembly main body
43 weir tube
44 beverage container
45 interior volume of beverage container
46 flow perforations at top of weir tube
51 beverage container
52 outer elastomeric o-ring seal
53 fluid delivery assembly main body
54 vacuum pressure feed-in or vacuum gage attachment point
55 pressurized fluid feed-in
56 vacuum pressure feed-in or vacuum gage attachment point
57 inner elastomeric o-ring seal
58 permeable solid which mates to the beverage container through an interference fit
60 interior volume of beverage container
61 beverage container
62 outer elastomeric o-ring seal
63 fluid delivery assembly main body
64 vacuum pressure feed-in or vacuum gage attachment point
65 pressurized fluid feed-in
66 vacuum pressure feed-in or vacuum gage attachment point
67 inner elastomeric o-ring seal
68 perforated stopper with mount holes for an umbrella check valve, which hermetically mates with the beverage container through an interference fit
69 umbrella check valve in the open position; fluid streamlines pass underneath said umbrella check valve
70 interior volume of beverage container
71 free surface of beverage
81 beverage container
82 outer elastomeric o-ring seal
83 fluid delivery assembly main body
84 vacuum pressure feed-in or vacuum gage attachment point
85 pressurized fluid feed-in
86 vacuum pressure feed-in or vacuum gage attachment point
87 inner elastomeric o-ring seal
88 perforated stopper with mount holes for an umbrella check valve, which hermetically mates with the beverage container through an interference fit
89 umbrella check valve
90 interior volume of beverage container
91 free surface of beverage
All embodiments lend themselves to installation as depicted in
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiments of
Filling is initiated in one of two ways. If constantly-pressurized fluid is being delivered, a valve mechanism directly upstream of the fluid delivery assembly is actuated open, allowing the constantly-pressurized fluid to flow into the fluid delivery assembly (15, 32, 41, 55, 65, 85). If dynamically-pressurized fluid is being delivered, a fluid reservoir upstream of the fluid feed-in (15, 32, 41, 55, 65, 85) is pressurized in order to initiate filling. In either case, pressurized fluid consequently flows from the upstream reservoir and through the fluid delivery assembly (13, 31, 40, 53, 63, 83). Because of the seal formed between the fluid delivery assembly and the beverage container, the fluid continues upward, through the beverage container's hole or permeable surface, through its outflow mitigation device (18, 19, 34, 43, 58, 68, 69, 88, 89), and into the beverage container's interior volume (20, 35, 45, 60, 70, 90), filling it.
While filling, embodiments employing a one-way valve are forced into fluid communication with the fluid delivery assembly by the inflowing fluid, as depicted in
Filling is stopped by either closing the valve upstream of the fluid delivery assembly, by depressurizing the fluid reservoir, or, if applicable, by actuating the outflow mitigation device closed.
If the beverage container's valve is a one-way valve (19, 34, 69, 89), it will close automatically when flow from the fluid delivery assembly stops. If the beverage container uses a weir device (43) for outflow mitigation, outflow from the beverage container will be stemmed automatically, by geometry. If the beverage container uses a permeable channel for outflow mitigation (58), outflow from the beverage container will be stemmed automatically, by lack of differential pressure. If the means of outflow mitigation is manually actuated, the beverage container's outflow mitigation device must be actuated closed upon completion of filling in order to prevent leakage.
As depicted in
From the description above, a number of advantages of some embodiments of our method and apparatus for the bottom-up filling of beverage containers become evident:
Accordingly, the reader will see that the method and apparatus for the bottom-up filling of beverage containers
Although the description above contains many specificities, these should not be construed as limiting the scope of the embodiment but merely as providing illustrations of some of the presently preferred embodiments.
For example and not limitation, the filling opening of the beverage container may be contained on a bottom surface or a side surface of the container. In some embodiments, there may be one or more openings for receiving fluid. These openings may all be on the bottom surface of the vessel. Optionally, they may be only on the side. Optionally, they may be both on the bottom and the side. The present invention is not limited to any particular shape or size of the beverage container. The beverage fluid filling apparatus maybe a stationary system or it may be a system in motion. By way of example and not limitation, the filling apparatus may have a spoke and wheel configuration with a filler at the end of each spoke to engaged to one or more beverage container. Like a lazy-susan, the wheel configuration allows different beverages to be rotated to the desired location for easy access for a user. Others may use a conveyor belt design to allow beverage containers to be moved for ease of service or merely for entertainment value. Optionally, a single opening into the beverage container may be sized and/or shaped to receive one or more nozzles or fluid inputs. By way of nonlimiting example, the opening may be oval or racetrack shaped and receive a nozzle of matching shape that seals against the walls of the opening. The nozzle may have a septum that provides input from one liquid from one half of the nozzle and a different fluid or beverage from the other half. Optionally, the nozzle may have a coaxial configuration with a tube in the center and an outer tube surrounding the inner tube. It should be understood that the nozzle or input is not limited to any particular cross-sectional shape. It may be circular, triangular, square, polygonal, hexagonal, other shaped, and/or combinations of the above.
Thus, the scope of the embodiment should be determined by the appended claims and their legal equivalents, rather than and shown.
This application claims the benefit of provisional patent application No. 60/895,474, filed 18 Mar. 2007 by the present inventors, fully incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
60895474 | Mar 2007 | US |