1. Field of the Invention
The present invention relates generally to a method of and a device for increasing the yield of oil production in a process of producing bio-ethanol.
2. Description of the Related Art
In known bio-ethanol plants stillage of grains such as corn is processed in order to produce ethyl alcohol, or so called bio-ethanol. The process usually is a dry milling process in which the starch in the grains is fermented. The fermentation creates a by-product or waste product, the so called whole stillage. The whole stillage is separated into distillers wet grains and the so called thin stillage. The thin stillage contains oil and is usually evaporated to become concentrated syrup and added to the solid waste materials to be dried and used as a supplement animal feed.
New efforts of improving this process are made by continuously pumping the concentrated syrup into a sedimentation tank and separating statically a part of the oil which is contained in the concentrated syrup. However, the yield of oil to be received in this new process is low.
Accordingly, a need exists for a method of and a device for increasing the yield of recovering oil in a process of producing bio-ethanol.
In accordance with one aspect of the invention, a method of increasing the yield of oil production in a process of producing bio-ethanol is disclosed, the method comprising: creating concentrated syrup as a by-product from an ethanol production, and recovering oil from the concentrated syrup, wherein the step of recovering oil from the concentrated syrup includes using a horizontal axis centrifuge, i.e., a centrifuge having a horizontal axis, and wherein the step of using a horizontal axis centrifuge includes using a bowl or drum, a discharge of deoiled syrup and a baffle plate or congestion plate, the baffle plate being located inside of the bowl and retaining oil from the discharge of deoiled syrup.
In accordance with another aspect of the invention, a device for increasing the yield of oil production in a process of producing bio-ethanol is disclosed, the device comprising: means for creating concentrated syrup as a by-product from an ethanol production, and means for recovering oil from the concentrated syrup, wherein said means for recovering oil from the concentrated syrup include a horizontal axis centrifuge, and wherein said horizontal axis centrifuge includes a bowl, a discharge of deoiled syrup and a baffle plate, the baffle plate being located inside of the bowl and retaining oil from the discharge of deoiled syrup.
In accordance with still another aspect of the invention, a method of increasing the yield of oil production in a process of producing bio-ethanol is disclosed, the method comprising: creating concentrated syrup as a by-product from an ethanol production, and recovering oil from the concentrated syrup, wherein the step of recovering oil from the concentrated syrup includes using a horizontal axis centrifuge, and wherein the step of using a horizontal axis centrifuge includes using a discharge of oil at a bowl of the horizontal axis centrifuge, the discharge diameter of which is 0.90 to 1.10 times of the respective diameter of a discharge of deoiled syrup.
In accordance with yet another aspect of the invention, a device for increasing the yield of oil production in a process of producing bio-ethanol is disclosed, the device comprising: means for creating concentrated syrup as a by-product from an ethanol production, and means for recovering oil from the concentrated syrup, wherein said means for recovering oil from the concentrated syrup include a horizontal axis centrifuge, and wherein said horizontal axis centrifuge includes a bowl, and a discharge of deoiled syrup and a discharge of oil at said bowl, the discharge diameter of said discharge of oil being 0.90 to 1.10 times of the respective diameter of said discharge of deoiled syrup.
In accordance with still a further aspect of the invention, a method of increasing the yield of oil production in a process of producing bio-ethanol is provided, the method comprising: creating concentrated syrup as a by-product from an ethanol production, and recovering oil from the concentrated syrup, wherein the step of recovering oil from the concentrated syrup includes using a horizontal axis centrifuge, and wherein the step of using a horizontal axis centrifuge includes using a three-phase horizontal axis centrifuge.
In accordance with yet another aspect of the invention, a device for increasing the yield of oil production in a process of producing bio-ethanol is disclosed, the device comprising: means for creating concentrated syrup as a by-product from an ethanol production, and means for recovering oil from the concentrated syrup, wherein said means for recovering oil from the concentrated syrup include a horizontal axis centrifuge, and wherein said horizontal axis centrifuge is a three-phase horizontal axis centrifuge.
Preferably the step of using a baffle plate inside of a bowl of the horizontal axis centrifuge includes using a baffle plate, the diameter of which is 0.70 to 0.95 times of the respective diameter of the bowl of the horizontal axis centrifuge.
In a preferred embodiment, the step of using a horizontal axis centrifuge includes discharging the recovered oil from the horizontal axis centrifuge by using an adjustable weir disk.
In another preferred embodiment, the step of using a horizontal axis centrifuge includes discharging the recovered oil from the horizontal axis centrifuge by using an impeller disk or peeling disk.
Further preferred, the step of creating concentrated syrup as a by-product from an ethanol production includes producing whole stillage, recovering thin stillage from the whole syrup by using a horizontal axis centrifuge and concentrating the thin stillage by using an evaporator.
In a further preferred embodiment, the step of recovering oil from the concentrated syrup includes storing the concentrated syrup in a storage tank before conducting it to the horizontal axis centrifuge.
The step of conducting the concentrated syrup from the storage tank to the horizontal axis centrifuge further preferably includes drawing off the concentrated syrup at the top of the syrup stored in the storage tank.
Finally, in a further preferred embodiment the step of using a horizontal axis centrifuge includes providing a centrifugal acceleration of 1800 to 2100×G, preferably 1900 to 2000×G, most preferred 1960×G on the concentrated syrup in the horizontal axis centrifuge.
In
The step 22 is followed by a distillation step 24 in which bio-ethanol 26 is received. The by-product of the distillation step 24, a so called whole stillage 27, is further separated mechanically in a step 28 via a horizontal axis centrifuge, preferable a two-phase helical conveyor centrifuge. In said step 28 the whole stillage 27 is separated into a solid phase, the so called distillers wet grains 30, and a liquid phase, the so called thin stillage 32.
In
In
The rest of the syrup 38, a so called deoiled syrup 50, is conducted to the above mentioned step 40 in which it is dried, in order to become distillers dried grains with solubles 42.
The bowl 58 is provided with a first outlet 62 for a “liquid phase” and a second outlet 64 for a “solid phase”. The first outlet 62 is provided with an adjustable weir disk or plate 66 at one of the front walls of the bowl 58, and the second outlet 64 is provided at the opposite front wall of the bowl 58 at a conical part 58a thereof. The conical part 58a forms nearly one half of the outer wall of the bowl 58. The screw 60 serves as a transportation means in order to discharge material from a cylindrical part 58b of the bowl 58 radial inwardly along the conical part 58a and out of the second outlet 64.
The syrup 38 to be separated in the horizontal axis centrifuge 46 is conducted into the bowl 58 through an inlet 68 in the centre of the screw 60. The recovered oil 48 is discharged via the first outlet 62 across the adjustable weir disk 66, which may be adjusted even during rotation of bowl 58 and screw 60. The deoiled syrup 50 is discharged via the screw 60 along said conical part 58a through the second outlet 64.
In order to further improve the process of discharging the deoiled syrup 50 relative to the recovered oil 48, a modified horizontal axis centrifuge 46 is depicted in
The baffle plate 68 further helps to transport the deoiled syrup to the second discharge 64. The deoiled syrup is very soft or pasty. Thus, the deoiled syrup is transported as a “heavy phase” via an accumulation at the baffle plate 68. In other words, the deoiled syrup is pressed under the baffle plate 68 and up the conical part 58a. In order to improve said transport of deoiled syrup, the diameter of the baffle plate 68 is 0.70 to 0.95 times of the respective diameter of the bowl 58.
In
The syrup 38 to be separated in the horizontal axis centrifuge 46 is again conducted into the bowl 58 through an inlet 68. The recovered oil 48 is discharged under pressure via the first outlet 62 through the impeller disk 70, which may be adjusted even during rotation of bowl 58 and screw 60. The deoiled syrup 50 is again discharged via the screw 60 along said conical part 58a through the second outlet 64. For improvement of the process of discharging the deoiled syrup 50 relative to the recovered oil 48,
The syrup 38 to be separated in the horizontal axis centrifuge 46 is again conducted into the bowl 58 through an inlet 68.
The first outlet 62 is provided with an adjustable weir disk 66 and serves for discharging recovered oil 48.
The second outlet 64 is usually not used for discharging any material during the process of separating syrup 38. In contrast, the second outlet 64 serves for finally emptying the bowl 58 after the end of operation of the horizontal axis centrifuge 46. The screw 60 helps to spread the syrup 38 into the bowl 58 during the process of separation and to discharge residual material through the second outlet 64 at the end of the process.
The deoiled syrup 50 is discharged under pressure via the third outlet 72, which is provided with an adjustable impeller disk 70.
Alternatively, the second outlet 64 may serve for additionally discharging deoiled syrup 50 out of the bowl 58. Therefore, the deoiled syrup 50 is discharged via the screw 60 along the conical part 58a.
For further improving the process of discharging the deoiled syrup 50 through the second outlet 64 relative to the recovered oil 48,
In
The syrup 38 to be separated in the horizontal axis centrifuge 46 of
The first outlet 62 is provided with an adjustable weir disk 66 and serves for discharging recovered oil 48.
The second outlet 64 includes an adjustable impeller disk 70 and serves for discharging deoiled syrup 50 under pressure.
Further, at the horizontal axis centrifuge 46 of