Claims
- 1. A method of handling paper sheets to be stacked, comprising:
- advancing the sheets seriatim gripped between upper and lower corunning high speed conveyor belts in which said lower belts leave the advancing ends of the sheets at a predetermined point while said upper high speed conveyor belts extend a substantial distance beyond said point into sheet controlling tunnel relation over a slower speed multi-belt conveyor;
- propelling the sheets across a gap from said lower high speed conveyor belts toward and onto said slower speed conveyor;
- and after each successive sheet has been fully received on said slower speed conveyor stopping high speed advance of the sheet and effecting impermanent wave-like longitudinal jam preventing stiffening rib deflection of the sheet and causing the sheet to travel with the slower speed conveyor so as to receive from said high speed conveyor belts a succeeding sheet in superimposed overlapping relation for stacking purposes.
- 2. A method according to claim 1, comprising effecting said stiffening rib deflection of the successive sheets by pressing stop rollers against alternate ones of the belts of the slower speed conveyor to deflect said alternate belts below the other belts of the slower speed multi-belt conveyor.
- 3. A method according to claim 1, including directing ionized air downwardly through said upper high speed conveyor belts at said gap and downwardly onto the paper sheets traversing said gap and thereby eliminating static electricity attraction between the paper sheets and said upper conveyor belts and also pushing the paper sheets downwardly away from said upper conveyor belts whereby to assure freedom from interference between the trailing end of each sheet as it is delivered to the slower speed conveyor and the leading end of the next succeeding sheet.
- 4. In a method of handling paper sheets to be stacked, including continuously advancing the sheets seriatim gripped between upper and lower corunning high speed conveyor belts in which said lower belts leave the advancing ends of the sheets at a predetermined point while said upper high speed conveyor belts extend a substantial distance beyond said point into sheet controlling tunnel relation over a slower speed conveyor on which the sheets are received across a gap from said lower speed conveyor belts for slowdown and stacking purposes, the improvement comprising:
- effecting impermanent wave-like longitudinal stiffening rib deflection of the sheets as they enter said gap so that said sheets will advance across said gap onto said slow speed conveyor without buckling;
- propelling each rib-stiffened sheets across said gap from said lower high speed conveyor belts toward and onto said slower speed conveyor;
- continuously directing ionized air downwardly through said upper high speed conveyor belts at said gap and downwardly onto each advancing paper sheet traversing said gap and thereby eliminating static electricity attraction between the paper and said upper conveyor belts and also continuously biasing the paper sheet downwardly away from said upper conveyor belts;
- releasing the trailing end of each sheet as it enters said gap from said stiffening rib deflections so that the trailing end returns toward the original plane of the sheet;
- by the continuous biasing effect of said continuously directed ionized air pushing said trailing end downwardly in said gap away from the lower high speed belts and thereby assuring freedom from interference by said trailing end with the leading impermanently rib-stiffened end of the next succeeding sheet;
- and as each successive sheet is fully received on said slower speed conveyor stopping high speed advance of the sheet and effecting impermanent wave-like longitudinal jam preventing stiffening rib deflection of the sheet and causing the sheet to travel with the slower speed conveyor so as to enable receiving from said high speed conveyor belts a next succeeding sheet in superimposed overlapping relation for slowdown and stacking purposes.
- 5. A method according to claim 4, including supporting the trailing ends of said sheets against dropping in said gap substantially below the top of said slower speed conveyor.
- 6. A method according to claim 4, comprising directing said ionized air from a continuously ionizing device mounted adjacently above said upper high speed conveyor belts and in overlying relation to said gap.
- 7. In an apparatus for handling paper sheets to be stacked and including upper and lower corunning high speed conveyor belts for advancing the sheets seriatim gripped between said belts, said lower belts advancing with the sheets to a predetermined dropoff point and a slower speed conveyor extending in sheet receiving but gap relation from said dropoff point, and on which the sheets are received for slowdown and stacking purposes, said upper high speed conveyor belts extending beyond said dropoff point and into sheet controlling tunnel relation over said slower speed conveyor, the improvement comprising:
- means for effecting impermanent wave-like longitudinal stiffening rib deflection of said sheets as the sheets enter said gap so that they will advance across said gap onto said slower speed conveyor without buckling;
- said lower high speed conveyor belts releasing the trailing end of each sheet as the trailing end enters said gap and thereby releasing the trailing end portion of the sheet from said stiffening rib deflection means so that the trailing end returns toward the original plane of the sheet;
- means for continuously directing ionized air downwardly onto and through said upper high speed conveyor belts at said gap and downwardly onto each advancing paper sheet traversing said gap from said dropoff point toward and onto said slower speed conveyor, and thereby eliminating static electricity attraction between the paper sheets and said upper conveyor belts and also continuously biasing the paper sheets downwardly away from said upper conveyor belts, the continuously biasing effect of said continuously directed ionized air from said directing means pushing the trailing end of each advancing sheet, as it enters said gap, away from said drop off point, thereby assuring freedom from interference by said trailing end with the impermanently rib-stiffened leading end of the next succeeding sheet;
- and means for stopping high speed advance of each successive sheet as it is fully received on said slower speed conveyor and for at the same time effecting impermanent wave-like longitudinal jam preventing stiffening rib deflection of each sheet so that each sheet is caused to travel with the slower speed conveyor so as to enable receiving thereon from said high speed conveyor belts a next succeeding sheet in superimposed overlapping relation for slowdown and stacking purposes.
- 8. Apparatus according to claim 7, wherein said means for continuously directing ionized air comprises a device mounted adjacently above said upper high speed conveyor belts and in overlying relation to said gap.
- 9. Apparatus according to claim 7, wherein said slower speed conveyor comprises spaced longitudinally running belts, said means for stopping high speed advance of each successive sheet comprise individual rollers thrusting downwardly against said slower speed conveyor belts, and said means for stiffening rib deflection of the sheets in coordinated relation with operation of said means for stopping high speed advance of the sheets comprising alternate ones of said sheet stopping rollers thrusting the slower speed conveyor belts to a lower elevation than the remaining stopping rollers thrust the remaining slower speed conveyor belts.
- 10. Apparatus according to claim 7, including means for supporting the trailing end of said sheets against dropping in said gap substantially below the top of said slower speed conveyor.
- 11. Apparatus for handling paper sheets to be stacked, comprising:
- upper and lower corunning high speed conveyor belts for advancing the sheets seriatim gripped between said belts;
- said lower belts advancing with the sheets to a predetermined dropoff point;
- a slower speed multi-belt conveyor extending in sheet receiving but gap relation from said dropoff point;
- said upper high speed conveyor belts extending beyond said dropoff point and into sheet controlling tunnel relation over said slower speed conveyor;
- and means for stopping high speed advance of each successive sheet after it has been fully received on said slower speed conveyor and for effecting impermanent wave-like longitudinal jam preventing stiffening rib deflection of said sheets and for causing such sheet to travel with the slower speed conveyor so as to receive thereon from said high speed conveyor belts a succeeding sheet in superimposed overlapping relation for stacking purposes.
- 12. Apparatus according to claim 11, wherein said means for stopping and effecting said stiffening rib deflection of the successive sheet comprises stop rollers pressing against alternate ones of the belts of said slower speed conveyor and deflecting said alternate belts below other belts of the slower speed conveyor.
- 13. Apparatus according to claim 11, including means for directing ionized air downwardly through said extending upper high speed conveyor belts at said gap and downwardly onto the paper sheets traversing said gap from said dropoff point toward and onto said slower speed conveyor and thereby eliminating static electricity attraction between the paper sheets and said upper conveyor belts and also pushing the paper sheets downwardly away from said upper conveyor belts whereby to assure freedom from interference between the trailing end of each sheet as it is delivered to the slower speed conveyor and the leading end of the next succeeding sheet.
- 14. A method of handling paper sheets to be stacked, comprising:
- advancing the sheets seriatim gripped between upper and lower corunning high speed conveyor belts in which said lower belts leave the advancing ends of the sheet at a predetermined point while said upper high speed conveyor belts extend a substantial distance beyond said point into sheet controlling tunnel relation over a slower speed conveyor on which the sheets are received for slowdown and stacking purposes;
- propelling the sheets across a gap from said lower high speed conveyor belts toward and onto said slower speed conveyor;
- effecting impermanent wave-like longitudinal stiffening rib deflection of the sheets before they enter said gap, whereby to facilitate advance of the leading ends of the sheets across said gap in a stable and sag resistant manner at least beyond the point of overlap with respect to the trailing ends of the next preceding sheets on said slower speed conveyor;
- directing air downwardly through said upper high speed conveyor belts at said gap and downwardly onto the sheets traversing said gap and pushing the trailing ends of the paper sheets after release from said upper conveyor belts downwardly relative to said dropoff point whereby to assure freedom from interference between the trailing end of each sheet as it is delivered to the slower speed conveyor and the leading end of the next succeeding sheet;
- and as each successive sheet is fully received on said slower speed conveyor stopping high speed advance of the sheet and effecting impermanent wave-like longitudinal jam preventing stiffening rib deflection of the sheets and causing the sheet to travel with the slower speed conveyor for reception from said high speed conveyor belts a succeeding sheet in superimposed overlapping relation for slowdown and stacking purposes.
- 15. A method according to claim 14, which comprises ionizing said air for eliminating static electricity attraction between the paper sheets and said upper conveyor belts.
- 16. Apparatus for handling paper sheets to be stacked, comprising:
- upper and lower corunning high speed conveyor belts for advancing the sheets seriatim gripped between said belts;
- said lower belts advancing with the sheets to a predetermined dropoff point;
- a slower speed conveyor extending in sheet receiving but gap relation from said dropoff point, and on which the sheets are received for slowdown and stacking purposes;
- said upper high speed conveyor belts extending beyond said dropoff point and into sheet controlling tunnel relation over said slower speed conveyor;
- means for effecting impermanent wave-like longitudinal stiffening rib deflection of the sheet before they enter said gap, whereby to facilitate advance of the leading ends of the sheets across said gap in a stable and sag resistant manner at least beyond the point of overlap with respect to the trailing ends of the next preceding sheets on said slower speed conveyor;
- means for continuously directing air downwardly through said upper high speed conveyor belts at said gap and downwardly onto the sheets traversing said gap for pushing the trailing ends of the paper sheets after release from said upper conveyor belts downwardly relative to said dropoff point to assure freedom from interference between the trailing end of each sheet as it is delivered to the slower speed conveyor and the leading end of the next succeeding sheet;
- and means for (1) stopping high speed advance of each successive sheet as it is fully received on said slower speed conveyor and (2) for effecting impermanent wave-like longitudinal jam preventing stiffening rib deflection of the sheets and (3) for causing the sheet to travel with the slower speed conveyor for reception from said high speed conveyor belts a succeeding sheet in superimposed overlapping relation for slowdown and stacking purposes.
- 17. Apparatus according to claim 16, comprising means for ionizing said air for eliminating static electricity attraction between the paper sheets and said upper conveyor belts.
Parent Case Info
This is a continuation, of application Ser. No. 029,397, filed Apr. 12, 1979, now abandoned.
US Referenced Citations (9)
Continuations (1)
|
Number |
Date |
Country |
Parent |
29397 |
Apr 1979 |
|