Method of and system for increasing drilling efficiency

Information

  • Patent Grant
  • 6233498
  • Patent Number
    6,233,498
  • Date Filed
    Thursday, March 5, 1998
    26 years ago
  • Date Issued
    Tuesday, May 15, 2001
    23 years ago
Abstract
A method of and system for increasing the efficiency of drillers in performing drilling operations measures performance parameters of drilling events performed by drillers, stores measurements of the performance parameters in a database, and displays a measurement of a selected performance parameter for a selected driller.
Description




FIELD OF THE INVENTION




The present invention relates generally to earth boring and drilling and more particularly to a method of and system for increasing the efficiency of boring and drilling operations by measuring the performance of discrete events and operations by drillers and displaying and comparing measures of performance of the drillers.




DESCRIPTION OF THE PRIOR ART




It is very expensive to drill and complete bore holes in the earth such as those made in connection with oil and gas wells. Oil and gas bearing formations are typically located thousands of feet below the surface of the earth. Accordingly, thousands of feet of rock must be drilled through in order to reach the producing formations.




Drilling encompasses many tasks, some of which are repeated thousands of times over the course of completing a 20,000 foot well. In practice, oil and gas wells are drilled in repeated relatively short segments. Each time the drill bit penetrates into the earth the length of a section of drill pipe, the driller stops drilling, raises the drill string, inserts another section of drill pipe into the drill string, and lowers the drill string back into the bore hole so that the bit can begin drilling again. Additionally, the driller must trip the entire drill string out of the bore hole periodically to service the bottom hole assembly or perform other operations. After completing such operations, the driller must trip the entire drill string back into the bore hole before recommencing drilling. In addition to the actual drilling, a number of other operations, such as running and cementing casing, must be performed in order to complete the well.




The cost of drilling and completing a well is primarily time dependent. Drilling contractors typically charge a day rate for their equipment and crews. Thus, the cost of drilling and completing the well is the day rate multiplied by the number of days necessary to drill and complete the well. Some contractors work on a turn-key basis in which they agree to complete a well to a certain depth for a fixed price. The customer's cost, in the day rate situation, or the contractor's profit, in the turn-key situation, depends upon how long it takes to drill and complete the well.




Currently, wells are drilled and completed on a best efforts basis. Drillers and other rig personnel do their jobs in the best way they know how. Some rig personnel are more skillful than others, but improvements in drilling efficiency have been primarily the result of improved technology. For example, improved drill bits have resulted in increases in both bit life and rate of penetration. Increased rates of penetration clearly leads to faster drilling and earlier completion of the well. With increased bit life, the bit can drill for a longer period of time before the drill string must be tripped out of the hole to replace the bit. However, there has been no substantial effort to improve the overall efficiency of oil and gas drilling operations by increasing the overall skill and efficiency of the drilling personnel in their performance of repeatable tasks.




It is an object of the present invention to identify discrete tasks performed in drilling an oil and gas well and to provide a method and system for measuring and tracking the performance of the identified tasks to improve the overall efficiency of operations.




SUMMARY OF THE INVENTION




The present invention provides a method of and system for increasing the efficiency of drillers in performing drilling operations. Briefly stated, method of the present invention, which is implemented in a computer system, measures performance parameters of drilling events performed by the drillers, stores measurements of the performance parameters in a database, and displays a measurement of a selected performance parameter for a selected driller.




In order to show trends, the method may display, graphically or numerically, measurements of one or more selected performance parameters measured over a selected time period for the selected driller. The method may also display an average value of measurements of the selected performance parameters measured over the selected time period for the selected driller. The method may display an explicit indication of a trend in measurements of the selected performance parameters measured over the selected time period. The method may also display comparisons of performance of selected drillers.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a pictorial illustration of a rotary drilling rig.





FIG. 2

is a block diagram of a system according to the present invention.





FIG. 3

is a high level flowchart of sensor data processing according to the present invention.





FIG. 4

is a high level flowchart of event timer processing according to the present invention.





FIG. 5

is an illustration of a rig information window according to the present invention.





FIG. 6

is an illustration of a report types selection window according to the present invention.





FIG. 7

is an illustration of a text reports selection window according to the present invention.





FIG. 8

is an illustration of a time range selection window according to the present invention.





FIG. 9

is an illustration of a driller selection window according to the present invention.





FIG. 10

is an illustration of a hole type selection window according to the present invention.





FIG. 11

is an illustration of a graphics reports selection window according to the present invention.





FIG. 12

is an illustration of a graph selection window according to the present invention.





FIG. 13

is an illustration of a drilling parameters report according to the present invention.





FIG. 14

is an illustration of a total connection time report according to the present invention.





FIG. 15

is an illustration of a drilling summary report according to the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to the drawings and first to

FIG. 1

, a drilling rig is designated generally by the numeral


11


. Rig


11


in

FIG. 1

is depicted as a land rig. However, as will be apparent to those skilled in the art, the method and system of the present invention will find equal application to non-land rigs, such as jack-up rigs, semisubmersibles, and the like. Also, although a conventional rotary rig is illustrated, those skilled in the art will recognize that the present invention is also applicable to other drilling technologies, such as top drive, power swivel, downhole motor, coiled tubing units, and the like. Rig


11


includes a mast


13


that is supported on the ground above a rig floor


15


. Rig


11


includes lifting gear, which includes a crown block


17


mounted to mast


13


and a traveling block


19


. Crown block


17


and traveling block


19


are interconnected by a cable


21


that is driven by draw works


23


to control the upward and downward movement of traveling block


19


. Traveling block


19


carries a hook


25


from which is suspended a swivel


27


. Swivel


27


supports a kelly


29


, which in turn supports a drill string, designated generally by the numeral


31


in a well bore


33


. Drill string


31


includes a plurality of interconnected sections of drill pipe


35


a bottom hole assembly (BHA)


37


, which includes stabilizers, drill collars, measurement while drilling (MWD) instruments, and the like. A rotary drill bit


41


is connected to the bottom of BHA


37


.




Drilling fluid is delivered to drill string


31


by mud pumps


43


through a mud hose


45


connected to swivel


27


. Drill string


31


is rotated within bore hole


33


by the action of a rotary table


47


rotatably supported on rig floor


15


and in nonrotating engagement with kelly


29


.




Drilling is accomplished by applying weight to bit


41


and rotating drill string


31


with kelly


29


and rotary table


47


. The cuttings produced as bit


41


drills into the earth are carried out of bore hole


33


by drilling mud supplied by mud pumps


43


.




As is well known to those skilled in the art, the weight of drill string


31


is substantially greater than the optimum weight on bit for drilling. Accordingly, during drilling, drill string


31


is maintained in tension over most of its length above BHA


37


. The weight on bit is equal to the weight of string


31


in the drilling mud less the weight suspended by hook


25


.




Referring now to

FIG. 2

, there is shown a block diagram of a preferred system of the present invention. The system includes a hook weight sensor


51


. Hook weight sensors are well known in the art. They comprise digital string gauges or the like, that produce a digital weight value at a convenient sampling rate, which in the preferred embodiment is five times per second. Typically, a hook weight sensor is mounted to the static line (not shown) of cable


21


of FIG.


1


.




The weight on bit can be calculated by means of the hook weight sensor. As drill string


31


is lowered into the hole prior to contact of bit


41


with the bottom of the hole, the weight on the hook, as measured by the hook weight sensor, is equal to the weight of string


31


in the drilling mud. Drill string


31


is somewhat elastic. Thus, drill string


31


stretches under its own weight as it is suspended in well bore


33


. When bit


41


contacts the bottom of bore hole


33


, the stretch is reduced and weight is transferred from hook


25


to bit


41


.




The driller applies weight to bit


41


effectively by controlling the height or position of hook


25


in mast


13


. The driller controls the position of hook


25


by paying out cable from drawworks


23


. Referring to

FIG. 2

, the system of the present invention includes a hook speed sensor. Hook speed sensors are well known to those skilled in the art. An example of a hook speed sensor is a rotation sensor coupled to crown block


17


. A rotation sensor produces a digital indication of the magnitude and direction of rotation of crown block


17


at the desired sampling rate. The direction and linear travel of cable


21


can be calculated from the output of the hook position sensor. The speed of travel and position of traveling block


19


and hook


25


can be easily calculated based upon the linear speed of cable


21


and the number of cables between crown block


17


and traveling block


19


.




In the manner well known to those skilled in the art, the rate of penetration (ROP) of bit


41


may be computed based upon the rate of travel of hook


25


and the time rate of change of the hook weight. Specifically, ROP


bit


=ROP


hook


+ΛdF/dT, where ROP


bit


represents the instantaneous rate of penetration of the bit, ROP


hook


represents the instantaneous speed of hook


25


, Λ represents the apparent rigidity of drill string


31


, and dF/dT represents the first derivative with respect to time of the weight on the hook. The driller can control the rate of penetration of bit


41


by controlling the weight on bit.




The driller can also affect or control the rate of penetration based upon the speed of rotation of rotary table


47


and the pressure of mud pumps


43


. Accordingly, referring to

FIG. 2

, the system in the present invention includes a rotary table RPM sensor


55


and a mud pump pressure sensor


57


, each of which outputs a digital value at the desired sampling rate.




In

FIG. 2

, each sensor


51


-


57


produces a digital output at the desired sampling rate that is received at a processor


59


, which in the preferred embodiment is a personal computer. Processor


59


is programmed according to the present invention to detect events based upon data received from sensors


51


-


57


, make appropriate calculations of drilling performance parameters, and store sampled data, directly measured drilling performance parameters, such as hook speed, as well as calculated drilling performance parameters with appropriate time stamps in a relational database


61


.




The system of the present invention enables a user to retrieve from database


61


selected drilling performance parameters, trends in drilling performance parameters, and baseline data for any selected driller or drillers, over any selected time period. User input devices, such as a keyboard


63


and mouse


65


, are provided for enabling a user to input information and data into processor


59


as well as operate processor


59


to produce displays and reports according to the present invention, which may be displayed upon a display


67


or printed with a printer


69


.




The method and system of the present invention records drilling parameters, such as weight on bit and bit rate of penetration, for each driller so that the driller may improve his ability to achieve and maintain an optimum rate of penetration. In addition to rate of penetration, there are a number of other events under the control of the driller that affect the time required to drill the well. There are a number of operations, such as making connections, tripping in and out of the bore hole, and handling the bottom hole assembly, that the driller and his crew perform as part of drilling operations in which the bit is not advancing into the ground. The time spent in each of those operations adds to the time required to complete the well. According to the present invention, the timing of events in connection with those operations is recorded for each driller.




Referring now to

FIG. 3

, there is shown a high level flow chart of sensor data processing according to the present invention. Sensors


51


-


57


of

FIG. 2

each output a digital value of the parameter they sense at a convenient sampling rate, which in the preferred embodiment is five times per second. The sensor values may be received into a buffer to await processing by processor


59


. The system receives the rotary table RPM, mud pump pressure, weight on hook, and hook speed values from the buffers and stores those values with time stamps at blocks


71


-


77


, respectively, of FIG.


3


. Then, the system calculates weight on bit and stores the weight on bit value at block


79


. Weight on bit is equal to the weight of the string in the mud minus the weight on hook. Then, the system calculates the bit rate of penetration (ROP) and stores the calculated ROP with a time stamp at block


81


. ROP is calculated by adding the product of the apparent rigidity of the drill string and the time rate of change of the weight on hook to the instantaneous hook speed received at block


77


. After the system has calculated ROP, processing returns to block


71


to receive another set of sensor data. The system loops through

FIG. 3

processing about five times per second.




Referring now to

FIG. 4

, there is shown event processing according to the present invention. Generally, events are activities such as drilling, making connections, tripping out of the hole, bottom hole assembly handling, and tripping into the hole. An event may comprise subevents. For example, a connection event begins when the bit is lifted off the bore hole bottom and ends when the bit reaches the bottom again to recommence drilling. However, according to the present invention, a single connection event comprises the time spent raising the string to the slips, the time the string spends in the slips, and the time spent lowering the bit back to the bottom.




The system detects an event start signature at block


83


. A signature is a particular combination of sensor values that indicates the occurrence of an event. The system of the present invention includes logic that is triggered by the detection of an event signature. When the system detects an event start signature, the system starts an event timer, at block


85


. Then, the system implicitly waits for the detection of an event in the signature, at block


87


. When the system detects an event and signature, the system stops the event timer, stores the event time with a time stamp, and resets the event timer at block


89


.




An end signature for one event may be a start signature for another event. For example, in connections, the signature that indicates that the string is supported by the slips signals the end of raising the string and the beginning of the time spent in the slips. Accordingly, in the preferred embodiment of the present invention, events are processed as separate processes.




The data recorded in and accessible from database


61


are listed along with their respective formats as follows:


















Data Retrieved Date and Time




Date/Time






Tour Change Time




Date/Time






Tour Begin Time




Date/Time






Comments




Number (Long)






Rig Activity




Number (Byte)






Rig Activity - Drilling




Number (Long)






Rig Activity - Circulating




Number (Long)






Rig Activity - Testing BOPE




Number (Long)






Rig Activity - Rigging Up Casing




Number (Long)






Rig Activity - Running Casing




Number (Long)






Rig Activity - Rigging Up Cement




Number (Long)






Rig Activity - Cementing




Number (Long)






Rig Activity - Drive Pipe Welding Time




Number (Long)






Rig Activity - Connect




Number (Double)






Rig Activity - Other




Number (Long)






Drilling - Feet




Number (Long)






Drilling - Avg ROP this tour




Number (Long)






Drilling - Avg ROP last tour




Number (Long)






Drilling - Avg ROP this hole section




Number (Long)






Drilling - Rotating hours on bottom




Number (Long)






Drilling - Total rotating hours




Number (Long)






Connections - Num Connections this tour




Number (Integer)






Connections - Avg Wt off Bit to In Slips this tour




Number (Single)






Connections - Avg Flow Check time this tour




Number (Single)






Connections - Avg Back Ream Time this tour




Number (Single)






Connections - Avg Circulating before connect this tour




Number (Single)






Connections - Avg In Slips to Out of Slips this tour




Number (Long)






Connections - Avg Multi Shot time this tour




Number (Long)






Connections - Avg Out of Slips to Wt on Bit this tour




Number (Long)






Connections - Avg MWD Survey time this tour




Number (Long)






Connections - Avg Circulating after connect this tour




Number (Long)






Connections - Avg Connection time this tour




Number (Long)






Connections - Avg Wt Off Bit to In Slips this well




Number (Long)






Connections - Avg Flow Check time this well




Number (Long)






Connections - Avg Back Ream time this well




Number (Long)






Connections - Avg Circulating before connect this well




Number (Long)






Connections - Avg In Slips to Out of Slips this well




Number (Long)






Connections - Avg Multi Shot time this well




Number (Long)






Connections - Avg Out of Slips to Wt on Bit this well




Number (Long)






Connections - Avg MWD Survey time this well




Number (Long)






Connections - Avg Circulating after connect this well




Number (Long)






Connections - Avg Connection time this well




Number (Long)






Connections - Total Avg Connect this tour




Number (Single)






Connections - Total Avg Connect this well




Number (Single)






Tripping Out - Avg Slip/Slip time this trip out




Number (Long)






Tripping Out - Avg Slip/Slip time last trip out




Number (Long)






Tripping Out - Avg Slip/Slip time this hole section




Number (Long)






Tripping Cut - Avg Stand Time this trip out




Number (Long)






Tripping Out - Avg Stand Time last trip out




Number (Long)






Tripping Out - Avg Stand Time this hole section




Number (Long)






Tripping Out - Avg Pipe Velocity this trip out




Number (Single)






Tripping Out - Max Pipe Velocity this trip out




Number (Single)






Tripping Out - Trip Out Time




Number (Long)






Tripping In/Out - Slip/Cut Drill Line




Number (Long)






Tripping In/Out - Testing BOPE




Number (Long)






Tripping In/Out - Testing Casing




Number (Long)






Tripping In/Out - Rig Maintenance




Number (Long)






Tripping In/Out - Shallow Testing of MWD




Number (Long)






Tripping In/Out - Breaking Circulation




Number (Long)






Tripping In/Out - Circulating




Number (Long)






Tripping In/Out - Working as Directed




Number (Long)






Tripping In/Out - Other




Number (Long)






BHA Handling - Total Handling Time




Number (Long)






BHA Handling - Download MWD




Number (Long)






BHA Handling - Change Out MWD




Number (Long)






BHA Handling - Change Out Mud Motor




Number (Long)






BHA Handling - Pull Wear Bushing




Number (Long)






BHA Handling - Retrieve Survey




Number (Long)






BHA Handling - Rig Maintenance




Number (Long)






BHA Handling - Testing BOPE




Number (Long)






BHA Handling - Waiting On Orders




Number (Long)






BHA Handling - Qrienting Mud Motor




Number (Long)






BHA Handling - Nozzle Change




Number (Long)






BHA Handling - Surface Testing MWD/LWD




Number (Long)






BHA Handling - Working as Directed




Number (Long)






BHA Handling - Other




Number (Long)






Tripping In - Avg Slip/Slip time this trip in




Number (Long)






Tripping In - Avg Slip/Slip time last trip in




Number (Long)






Tripping In - Avg Slip/Slip time this hole section




Number (Long)






Tripping In - Avg Stand Time this trip in




Number (Long)






Tripping In - Avg Stand Time last trip in




Number (Long)






Tripping In - Avg Stand Time this hole section




Number (Long)






Tripping In - Avg Pipe Velocity this trip in




Number (Single)






Tripping In - Max Pipe Velocity this trip in




Number (Single)






Tripping In - Trip In Time




Number (Long)






Hole Depth




Number (Single)






Driller ID




Number (Integer)






BitType




Number (Integer)






HoleSize




Number (Single)






WellID




Number (Integer)






RigManagerID




Number (Long)






BitROP




Number (Single)






RPM




Number (Single)






WOB




Number (Single)






PumpPressure




Number (Single)






RigTeam




Number (Integer)






RT_WtOffInSlip




Number (Single)






RT_InOutSlip




Number (Single)






RT_OutSlipsWtOnBot




Number






(Single) RT_TrueConnection




Number (Single)






RT_TripInSlipSlip




Number (Single)






RT_TripInStandTime




Number (Single)






RT_TripOutSlipSlip




Number (Single)






RT_TripOutStandTime




Number (Single)






AvgPipeRun




Number (Single)






BHA Handling - Change BHA




Number (Long)














The present invention provides a graphical user interface by which selected drilling performance parameters and trends in performance parameters for a selected driller or drillers, as well as baseline data, may be displayed, in either graphical or numerical form. Referring now to

FIG. 5

, there is shown a rig information window designated generally by the numeral


93


. The rig information window of

FIG. 5

displays information with respect to a particular well being drilled by a particular rig. The rig information window includes a make report control


91


that enables a user to select a report according to the present invention. Clicking make report control


91


causes the system to display a report types window


95


illustrated in FIG.


6


. Report types window


95


includes a list of report types.




As shown in

FIG. 6

, in the preferred embodiment, the report types include a tour report, a text summary report, a graphics summary report, and an end of well report. Each report type is associated with a control that enables the user to select a desired report. As shown in

FIG. 6

, the user has selected the text summary report by clicking control


97


. Report types window


95


includes a back control


99


and a next control


101


. Since report types window


95


is the first window in the report generation sequence of windows, back control


99


is disabled. Report types window also includes a print control


103


and a preview control


105


, which are also disabled in window


95


. After the user has selected the desired report type, clicking on next button


101


causes the system to display a report selection window.




Referring now to

FIG. 7

, a text reports selection window is designated generally by the numeral


107


. Text reports window


107


is generally similar to report types window


95


in that it includes a back control


99


, a next control


101


, a print control


103


, and a preview control


105


. Print control


103


and preview control


105


are disabled in text reports selection window


107


. Text reports window


107


includes a list of text reports, as opposed to graphics reports, that are supported by the present invention. In the preferred embodiment, the text reports include a drilling report, a tripping report, and an other report. Controls are associated with the reports listed in text reports window


107


that enable the user to select a report. As shown in

FIG. 7

, the user has selected the drilling text report by clicking a control


109


. After the user has selected the desired text report, clicking next control


101


causes the system to display a time range selection window shown in FIG.


8


and designated generally by the numeral


11


.




Referring to

FIG. 8

, time range window enables the user to select a time range for the report. The user may select a variable time by entering a time in a start time entry field


113


and entering a later time in an end time entry field


115


. The user may also select a fixed time from a pull down menu


117


. After the user has selected a time range for the report and clicks next button


101


, the system displays a driller selection window shown in FIG.


9


and designated generally by the numeral


119


. Referring to

FIG. 9

, driller selection window


119


includes a list of drillers. A check box control is associated with each driller on the list. Driller selection window


119


supports multiple selections. Accordingly, the user can select a single driller or multiple drillers for comparison purposes. After the user has selected the driller or drillers, clicking on next button


101


causes the system to display a hole selection window designated generally by the numeral


121


in FIG.


10


. Hole selection window displays a list of hole sections or diameters in the well. Each hole section in the list includes a check box that enables the user to select any or all of the whole sections displayed. Hole selection window


121


is the last window in the report generation sequence of windows. Accordingly, next control


101


is disabled. However, back control


99


, print control


103


and preview control


105


are enabled. Clicking on preview control


105


causes the system to display the report. In the sequence just illustrated, with respect to

FIGS. 7-10

, the system would display a text drilling report for the time range commencing at 12:00 a.m. Jan. 20, 1998 and ending at 12:00 a.m. Jan. 21, 1998 for drillers A-D in hole sections 6.25 inches-8.5 inches. An example of a drilling report is illustrated in FIG.


15


. Selection of print button


103


in

FIG. 10

causes the system to print the report.




Referring now to

FIG. 11

, graphics reports selection window is designated generally by the numeral


123


. The system displays graphics reports window


123


in response to selection of the graphics summary report item in report types window


95


, shown in FIG.


6


. Graphics reports window


123


includes a listing of graphical reports according to the present invention. In the preferred embodiment, the graphics reports include a drilling parameters report, a total connection time report, and a trip time report. A control is associated with each report listed in graphics reports window


123


. As shown in

FIG. 11

, the user has selected the control


125


associated with the drilling parameters report. When the user clicks next control


101


, the system returns to the sequence of windows illustrated in

FIGS. 8-10

so that the user may select a time range, a driller or drillers, and a hole section or sections, respectively.




When the user has completed hole section selection according to

FIG. 10

, the system displays a graph selection window illustrated in FIG.


12


and designated generally by the numeral


127


. Graph selection window includes a listing of the graphical display supported by the present invention. In the preferred embodiment, the graphical displays include bit ROP, RPM, WOB, and pump pressure. The graph selection list also includes an ALL selection choice which enables the user to select all of the choices for display. A control is associated with each graphic selection item in graph selection window


127


. As shown in

FIG. 12

, the user has selected the control


129


associated with the ALL choice.




Referring now to

FIG. 13

, there is illustrated a drilling parameters report according to the present invention. The drilling parameters report contains a plurality of fields including a tour range field


129


and driller field


131


. The drilling parameters report provides a graphical representation of the drilling performance of a selected driller identified in driller field


131


over a selected tour identified in tour range field


129


.




The report of

FIG. 13

may be either displayed on display


67


or printed with printer


69


of FIG.


2


. As shown in

FIG. 13

, the drilling parameters report provides graphic representations of bit ROP, RPM, WOB over the tour of the selected driller that commenced 12:00 a.m. Jan. 21, 1998 and ended at 12:00 p.m. Jan. 22, 1998. The drilling parameters are displayed graphically by means of line graphs and numerical values are displayed for the minimum, average, and maximum value of each drilling parameter. The drilling parameters report of

FIG. 13

also displays for each drilling parameter a trends line


133


, which is a graphical indication of the trend in the selected drilling parameter over the course of the tour. As shown in

FIG. 13

, with respect to bit ROP, the selected driller achieved an average bit ROP of 154.34 feet per hour, with a minimum value of 0.03 feet per hour and a maximum value of 367.68 feet per hour, with a downward trend over the tour. With respect to WOB, the selected driller maintained an WOB of 7.72 thousand pounds, with a minimum value of 0.00 thousand pounds and a maximum value of 26.18 thousand pounds, with an upward trend over the tour. The information in the drilling parameters report of

FIG. 13

may be used to improve the efficiency of the selected driller identified in driller field


131


.




Referring now to

FIG. 14

, there is shown an illustration of a total connection time report according to the present invention. The total connection time report of

FIG. 14

provides a graphical representation of the time taken by the selected driller identified in driller field


131


and his crew during the tour identified in tour range field


129


. When the total connection report of

FIG. 14

is generated, bar graphs are generated from the data stored in the database. The total connection time report of

FIG. 14

includes bar graphs


135


-


141


that indicate for each connection over the course of the tour the time from weight off the bottom until the string went into the slips, the time the string spent in the slips, the time from when the string came out of the slips, and the true correction time, which reflects the total time for each connection over the course of the tour. The total connection time report also displays trend lines for each of the connection subevents.




Referring now to

FIG. 15

, there is shown a drilling summary report according to the present invention. The drilling summary report displays in numerical format a comparison of the drilling and connection performance of a first selected driller, identified in an driller field


143


, and a second selected driller, identified in a driller field


145


, over the course of the tour range identified in tour range field


147


. As shown in

FIG. 15

, the driller identified as “A. Driller” achieved somewhat higher mean ROP over the course of his tour than the driller identified as “B. Driller.” However, A. Driller drilled substantially more total feet during his tour. By comparing the connections parameters for A. Driller and B. Driller, it is apparent that a large part of A. Driller's advantage in total feet drilled is due to A. Driller's faster true mean connection time.

FIG. 15

illustrates how the method and system of the present invention may be used to identify problems or inefficiencies and improve the overall drilling process.




As will be apparent from the foregoing description, the present invention provides a method and system by which any of the parameters recorded in the database may be displayed to improve the performance of selected drillers. The foregoing description is illustrative of the invention and not limiting. Accordingly, the true spirit and scope of the invention shall be determined according to the appended claims.



Claims
  • 1. A method of increasing the efficiency of drilling personnel in performing drilling operations, which comprises the computer implemented steps of:measuring performance parameters of drilling events performed by one or more individual drillers selected from a plurality of said drilling personnel; storing measurements of said performance parameters in a database; and, displaying a measurement of a selected performance parameter for a selected driller.
  • 2. The method as claimed in claim 1, including the computer implemented step of:displaying measurements of said selected performance parameter measured over a selected time period for a selected driller.
  • 3. The method as claimed in claim 1, including the computer implemented step of:displaying an average value of measurements of said selected performance parameter measured over a selected time period for said selected driller.
  • 4. The method as claimed in claim 1, including the computer implemented step of:displaying an indication of a trend in measurements of said selected performance parameter measured over said selected time period for said selected driller.
  • 5. The method as claimed in claim 1, including the computer implemented step of:displaying measurements of said selected performance parameters over said selected time period for said selected driller numerically.
  • 6. The method as claimed in claim 1, including the computer implemented step of:displaying said measurements of said selected performance parameters over said selected time period for said selected driller graphically.
  • 7. The method as claimed in claim 1, wherein said selected performance parameter is bit rate of penetration.
  • 8. The method as claimed in claim 1, wherein said selected performance parameter is weight on bit.
  • 9. The method as claimed in claim 1, wherein said selected performance parameter is connection time.
  • 10. The method as claimed in claim 9, wherein said selected performance parameter includes average connection time over a selected time period.
  • 11. A method of improving the efficiency of drilling personnel in performing drilling operations, which comprises the computer implemented steps of:measuring performance parameters of drilling events performed by one or more individual drillers selected from a plurality of said drilling personnel; storing measurements of said performance parameters in a database; displaying a list of report types for selection by a user; in response to user selection of a report type, displaying a list of reports within the selected report type for selection by said user; in response to user selection of a report from said list of reports, prompting said user to select a time range; in response to user selection of a time range, displaying a list of drillers for the selected time range; in response to use selection from said list of drillers, displaying the selected report for the selected time range for the selected driller.
  • 12. The method as claimed in claim 11, wherein said list of report types includes a text summary report type and graphics summary report type.
  • 13. The method as claimed in claim 12, wherein said text summary report type includes a drilling report and a tripping report.
  • 14. The method as claimed in claim 12, wherein said graphics summary report type includes a drilling parameters report.
  • 15. The method as claimed in claim 14, including the computer implemented step of:in response to user selection of said drilling parameters report, displaying a list of selectable drilling parameters.
  • 16. The method as claimed in claim 15, wherein said list of selectable drilling parameters includes a bit rate of penetration parameter and a weight on bit parameter.
  • 17. A system for improving the efficiency of drilling personnel in performing drilling operations, which comprises:sensors arranged to sense hook weight and hook position; means for sampling at periodic times hook weight and hook position values sensed by said sensors; means for determining drilling parameter values based upon sampled hook weight and hook position values; a relational databases for storing said drilling parameter values; and, means for displaying selected drilling parameters for one or more individual drillers selected from a plurality of said drilling personnel.
US Referenced Citations (28)
Number Name Date Kind
2688871 Lubinski Sep 1954
3777560 Guignard Dec 1973
3802259 Eckels Apr 1974
3881695 Joubert May 1975
3882474 Cain May 1975
4354233 Zhukovsky et al. Oct 1982
4535972 Millheim et al. Aug 1985
4591989 Tanaka May 1986
4689775 Scherbatskoy Aug 1987
4736297 LeJeune Apr 1988
4793421 Jasinski Dec 1988
4843875 Kerbart Jul 1989
4875530 Frink et al. Oct 1989
4876886 Bible et al. Oct 1989
4886129 Bourdon Dec 1989
4976019 Kitamura Dec 1990
5105130 Barker et al. Apr 1992
5159577 Twist Oct 1992
5398546 Jeffryes Mar 1995
5449047 Schivley, Jr. Sep 1995
5458207 Mattero Oct 1995
5474142 Bowden Dec 1995
5551286 Booer Sep 1996
5679894 Kruger et al. Oct 1997
5692181 Anand et al. Nov 1997
5842149 Harrell et al. Nov 1998
5881310 Airhart et al. Mar 1999
6021377 Dubinsky et al. Feb 2000