Method of and system for reverse mapping vnode pointers

Information

  • Patent Grant
  • 8615502
  • Patent Number
    8,615,502
  • Date Filed
    Monday, April 20, 2009
    16 years ago
  • Date Issued
    Tuesday, December 24, 2013
    12 years ago
Abstract
Embodiment of the invention provide a reverse name lookup function for providing an absolute path name or file name and absolute path name to the file name parent directory based on a vnode reference, NFS file handle reference, or file identifier reference associated with a computer virtual file system. A method in accordance with the invention comprises populating a table structure with vnodes, names, and absolute path information associated with the vnodes. The table structure and information are sufficient to generate an absolute path name and file name for each vnode. The table structure also includes entries for file identifiers, names, and associated absolute path information associated with the file identifiers. This information is sufficient to generate an absolute path name for each file identifier. The table is populated by hooking virtual file system function calls including the vnode name lookup function and the vnode inactive function. The table is populated with the file identifier entries by hooking the vnode inactive function.
Description
FIELD OF THE INVENTION

The invention relates to computer software. Specifically, the invention relates to methods of and systems for mapping a vnode pointer within a virtual file system to a file name and its absolute path name.


BACKGROUND OF THE INVENTION

Many computer file systems, are implemented using layers of abstraction including a virtual file system layer using vnodes. This is true for different variants of UNIX including HP-UX, AIX, and Solaris. FIG. 1 shows a file system 100 within a UNIX environment. These systems often lack a means to map or translate a vnode reference to the file name and its absolute path name.


At the top level, the file system provides a system interface for applications or network clients. This layer is shown in FIG. 1, which includes the system call (SYS_CALL) layer 110 and a Network File System (NFS) 160. The system call layer 110 provides a standardized interface for application programs (not shown). As a result, the underlying specifics of the file system can change or be replaced without requiring application modifications.


Below the system call layer 110 and the NFS 160 layer are one or more intermediate layers 105 below which lie the Virtual File System (VFS) layer 120. The VFS layer 120 references files by using vnode pointers. A vnode is a structure that represents a file in the file system 100. A vnode is created and used by the file system to reference a file. When a user attempts to open or create a file, if the VFS containing the file already has a vnode representing that file, a use count in the vnode is incremented and the existing vnode is used. Otherwise, a new vnode is allocated. Below the VFS layer 120 is the inode 130 layer. Inodes represent how files are organized on a disc drive 135.


Most operations within the file system 100 operate at the virtual file system layer and use vnodes or vnode pointers for file functions such as read, write, create, delete, and rename. Thus, extensions, modifications, or additions that hook into the file system 100, also need to operate on vnodes and or vnode pointers.


In this embodiment, the computer system 100 includes a Network File System (NFS) 160. The NFS 160 operates using NFS file handles or file identifiers (fids). Similar to the method by which file names are resolved into a vnode pointers, a file identifier or a NFS file handle for a file name is determined by determining the file identifier or NFS file handle for each directory and for the file name.



FIG. 2A is an example of prior art file system pseudo code 200 for resolving a file name “/user/foo/bar” 201 into a vnode pointer for a file delete operation. The pseudo code 200 is for illustrative purposes. Different operating systems, such as AIX, Solaris, and HP-UX can use different function names and calling parameters from the example shown in FIG. 2A.


In the first step 202, the file system root vnode pointer “rootvp” is used in the VOP_LOOKUP( ) operation to determine the vnode pointer for the “usr” directory name. In a second operation 203, the returned vnode pointer for the “usr” directory name is used by the VOP_LOOKUP( ) operation to determine the vnode pointer for the “foo” directory name. In a third operation 204, the returned vnode pointer for the “foo” directory name is used by the VOP_LOOKUP( ) operation to determine the vnode pointer for the “bar” file name. The returned vnode pointer “vp” is used for the delete operation 205, VOP_DELETE(vp).


Functions such as VOP_DELETE( ) are useful to monitor for file system enhancements such as applications that monitor or control file system changes. However, functions of interest, such as VOP_DELETE, operate on a vnode pointer and accordingly changes in the file system are not directly or easily reported or monitored using an associated file name and an absolute path name. The absolute path name is a string of characters that represents a file system object such as a file, directory, or link. The absolute path name is also referred to as a full path or fully qualified directory path.


When an NFS client (not shown) requests a file operation, the NFS 160 of FIG. 1 performs a set operations similar to the ones used by the system call interface 110. One difference is that the NFS 160 uses file identifiers (fids) or NFS file handles to operate on a file.



FIG. 2B illustrates the steps for determining the file identifier for the file /usr/foo/bar. The process 250 begins in the step 260 by looking up the fid for the first directory “usr” in the path name. From the root directory, a “root_fid” or “share_fid” is used as a known base point identifier for a file system. In the step 270, the fid returned for the “usr” directory is used in an NFS_LOOKUP( ) call to determine the fid for the “foo” directory. In the step 280, the fid returned for the “foo” directory is used in an nfs_lookup( ) call to determine the fid for the “bar” file. In the step 290, the returned fid is used for the file function NFS_DELETE(fid). The NFS_LOOKUP( ) and NFS_DELETE( ) functions represent pseudo code for the functions provided. The function names depend on the version of the UNIX operating system used. Similar steps can be used to resolve a NFS file handle.



FIG. 3 lists the types of information of interest 300 to an exemplary file change monitoring application that interfaces with the virtual file system. The application monitors and reports “who” 310, “what” 320, “where” 330, and “how” 340 a change is made. The “who” 310 is the login user name that made the change. The “what” 320 is the file name that was changed. The “where” 330 is the computer that made the change, and the “how” 340 is the name of the program that made the change. For determining the “who” 310, “where” 330, and “how” 340, there are known solutions. As described above, it is difficult to determine from a vnode the file name and absolute path name that changed. Applications monitoring file system changes need to operate or report events to an operator based on file names and absolute path names. Reporting changes based on vnodes would be meaningless to a person monitoring system changes. Accordingly, there is a need for the ability to translate a vnode, vnode reference, an NFS file handle or file identifier into an absolute path name.


SUMMARY OF THE INVENTION

In accordance with the present invention a method of and system for providing a reverse name lookup for a file reference is disclosed. A file reference includes a vnode pointer (vp), a NFS file handle, or a file identifier (fid). The present invention is thus advantageous for applications that monitor file changes at a Virtual File System (VFS) level but need to report detected changes in terms of a file name and an absolute path name.


In a first aspect of the present invention, a computer system having a file system that includes a virtual file system abstraction comprising a memory table structure. The memory table structure comprises one or more names within the file system. The names are one of file system directory names and file names as seen and used by a user of the computer system. The names are preferably text, but in other embodiments include the unicode encoding of different languages. Further, the table structure includes one or more file references associated with the virtual file system and, respectively, with the one or more names. Preferably the file reference is a vnode pointer, an NFS file handle, or a file identifier. However, the file reference can include a vnode, an index into a table of vnodes or any other type of indirections to a vnode, NFS file handle, or file identifier. Additionally, the memory table structure holds path name information associated with each of the one or more file references. The path name information is sufficient to generate either an absolute path name or file name and absolute path name to the file name parent directory. In one embodiment, the file references are vnode references, NFS file handles, file identifier references, or a combination thereof. In another embodiment, the one or more names is one of a file name, relative path name and an absolute path name. In another embodiment, the associated path name information is the absolute path name for the file reference. A combination of relative path names and pointers to table names or entries are also contemplated for the path name information.


In a further embodiment, the system further comprises software module configured to intercept a virtual file system vnode, a NFS file handle, or a file identifier name lookup. The one or more names, vnode references, NFS file handle references, file identifier references, and path name information are determined from the intercepted vnode, file handle, or file identifier name lookup. The information from the file name lookup function is used as the source for populating the table structure with one of one or more names, vnode references, and path name information. In a further embodiment, the vnode reference is one of a vnode, a vnode pointer index and wherein the file identifier reference is a file identifier.


In a further embodiment, the system comprises a software module configured to generate either an absolute path name or file name and absolute path name to the file name parent directory in response to receiving an associated vnode reference or an associated file identifier reference.


In a second aspect of the invention, a method of providing in a computer system that includes a virtual file system, either an absolute path name or file name and absolute path name to the file name parent directory from a file reference. The method comprises populating a table structure with a file reference, an associated name, and associated path name information. The table structure holds one or more vnode references, associated names, and associated path name information. The table structure has sufficient information to generate either an absolute path name or file name and absolute path name to the file name parent directory. In one embodiment, the file references are vnode references, NFS file handle references, file identifier references, or a combination of these. In another embodiment, the vnode reference is a vnode, vnode pointer, or an vnode index and the file identifier reference is a file identifier.


In a further embodiment, method further comprises a trapping or intercepting virtual file system references, NFS file handle references, file identifier references, or their combination. The populating the table structure is determined from the vnode reference, NFS file handler, or file identifier name lookup.


In another embodiment, the method further comprises generating either an absolute path name or file name and absolute path name to the file name parent directory from a vnode reference or file identifier reference.


In one embodiment, the name associated with a vnode pointer is one of a file name and a directory name. Preferably the name is a text string that in some embodiments is ASCII but in other embodiments includes unicode characters. In other embodiments the vnode reference is a vnode or a vnode pointer.


In yet another embodiment, the method includes generating either an absolute path name or file name and absolute path name to the file name parent directory from a vnode reference or file identifier reference.


In a further embodiment, the method further comprises converting the vnode reference to a file identifier upon trapping a virtual file system vnode release or inactivate VOP_INACTIVE function call. The table structure is further populated with the file identifier, file name associated with the released or inactivated vnode, the associated path name information, and any other information required to determine an absolute path name. The table structure also holds one or more file identifier structures, associated names, and associated absolute or relative path name information. The table structure associated with the file identifier has sufficient information to generate an absolute path name or file name and absolute path name to the file name parent directory.


In another aspect of the invention, a computer device comprises a computer-readable storage medium bearing computer executable code thereon for generating in a computer system that includes a virtual file system, either an absolute path name or file name and absolute path name to the file name parent directory from a file reference. The computer device comprises a program module configured to populate a table structure with a file reference, an associated name, and associated path name information. The table holds one or more file references, names, and path name information, associated with the file references. The table structure has sufficient information to generate either an absolute path name or file name and absolute path name to the file name parent for each file reference in the table.


In one embodiment of the present invention, the computer device further comprises a program module programmed to intercept virtual file system file reference name lookup, wherein the populating the table structure with the file reference, the associated name, and the associated path name information is determined from the file reference name lookup.


In a further embodiment, the file reference is a vnode reference, a file identifier reference, or a combination thereof. In another embodiment, each of the associated names is one of a file name, relative path name, and an absolute path name.


In another embodiment, the computer device includes a software module configured to generate either an absolute path name or file name and absolute path name to the file name parent directory a name and an associated absolute path name in response to receiving a vnode reference or a file identifier reference. In a further embodiment, the computer device vnode reference is one of a vnode, a vnode pointer, a vnode index and wherein the file identifier reference is a file identifier.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are better understood by reading the following detailed description in conjunction with the accompanying drawings.



FIG. 1 illustrates a prior art configuration of a file system.



FIG. 2A illustrates prior art pseudo code for resolving a file and path name to a vnode pointer.



FIG. 2B illustrates prior art pseudo code for resolving a file and path name to a fid.



FIG. 3 illustrates the types of information of interest for change tracking and logging in accordance with embodiments of the present invention.



FIG. 4 illustrates a file system supporting both a system call interface and a Network File System with a Reverse Name Lookup Cache (RNLC) or table in accordance with one embodiment of the present invention.



FIG. 5 illustrates a block diagram of an exemplary computing device suitable to implement a method for populating a reverse name lookup table in accordance with one embodiment of the present invention.



FIG. 6A illustrates the steps to populate reverse name lookup table in accordance with one embodiment of the present invention.



FIG. 6B illustrates the steps to determine the file name an absolute path name in accordance with one embodiment of the present invention.



FIGS. 7A and 7B illustrate an RNLC table in accordance with embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following descriptions are provided as an enabling teaching of embodiments of the invention. Those skilled in the relevant art will recognize that many changes can be made to the embodiments described, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and can even be desirable in certain circumstances, and are a part of the present invention.


The present invention provides for applications or functions that monitor or otherwise operate on vnodes, the capability to report or perform logical operations using the file name and absolute path name associated with a vnode. Without this capability, the reporting of changes would occur using vnodes which provide no useful information on their own. Accordingly, the present invention provides applications the capability to map a vnode, a potentially changing and operator meaningless value, to a file and absolute path name which is useful to operators or applications that deal with files on an absolute or relative path name basis.


In accordance with one embodiment of the invention, a file system includes a Reverse Name Lookup Cache (RNLC) for translating vnode pointers and file identifiers into a file name and an absolute path name. Data for the RNLC is found by intercepting specific system function calls to the virtual file system. The functions intercepted include the virtual file system functions such as VOP_DELETE, VOP_CREATE, VOP_RENAME, VOP_LOOKUP, and VOP_INACTIVE. Each of these functions operates on a vnode pointer (vp). In order to report file changes on a basis that a human operator can understand, i.e. in terms of a file name and absolute path name, an RNLC function is provided for translating a vnode pointer to a file name and an absolute name.



FIG. 4 is a block diagram of components of the computer operating system 400 including the virtual file system 420 and 440 in accordance with one embodiment of the present invention. The computer system 400 comprises a SYSTEM_CALL module 410 with its associated interface functions, an NFS Dispatch Table module 460 that includes the interface functions with the network protocol stack, other layers of abstraction 405, a Virtual File System layer 420 (VFS), hook or intercept module 422, I-nodes 440, disk drives 445, and an RNLC module 450. The computer file system 400 has hooks 422 are in the execution path between (a) the SYSTEM_CALL 410 and the NFS Dispatch Table module 460 and (b) the VFS layer 420.


The computer system 400 is configured to provide additional file system features such as file change monitoring as part of the hook or intercept modules 422. The additional features that are provided by the VFS hooks 422 include intercepting and processing a subset of the calls into the VFS layer 420. In one embodiment, these functions include the pseudo functions VOP_DELETE, VOP_CREATE, VOP_RENAME, VOP_LOOKUP, and VOP_INACTIVE. While FIG. 4 shows only a subset of the functions being hooked, other embodiments can hook more or fewer VFS layer 420 functions calls.


The RNLC 450 comprises a module 456 that performs the function of populating the table structure 455 with vnode references, fid structures, file names, and absolute or relative path information. Further, the RNLC 450 includes a translation module 458 that performs the function of generating a file name with absolute path information based on a provided vnode pointer or fid.


The table structure 455 is organized into a vp (vnode pointer) table 452 and a fid table 454. Each vp entry in the vp table 452 comprises a vnode reference, a name, and absolute path information associated with the vnode. Each fid entry in the fid table 454 comprises a fid structure, a name, and absolute path information associated with the fid. An example of the table structure 455 is further described below in the discussions of FIGS. 7A and 7B. The vnode reference in some embodiments is a vnode pointer which is a direct reference to a vnode. In other embodiments, the table structure can include NFS file handles and associated reference information to vnodes and path information. In further embodiments it is an indirect reference or any other means to reference a vnode. Examples of other indirect references to a vnode include using uniquely identifying vnode metadata, hashes of uniquely identifying vnode data, using a hash of the vnode pointers, using a hash of file identifiers, or using an index into a list of pre-allocated vnodes. Each name entry in the vp table 452 or fid table 454 represents a directory or a file name for the vnode. The name information is used to generate a fully qualified path of the parent directory. In one embodiment, the name information is the absolute path name. In other embodiments, the path information is linkage information for determining one level of the absolute path name. This includes linkages or references to one or more table entries that contain all or part of the absolute path name. Examples of these tables are discussed below and shown in FIGS. 7A and 7B. The fid table entries are similarly organized.


The NFS Dispatch table module 460 operates differently from the system_call module 410 since in using the NFS module 460, files might not be explicitly opened to perform file I/O. To perform an NFS operation on a file, the NFS server first receives a command over the network and the file identifier or NFS file handle to operate on. The file identifier or NFS file handle is then used to obtain a vnode via the VNODE_FROM_FID( ) pseudo-API. The actual file system operation is performed by passing the vnode to the appropriate VOP routine. Finally, the vnode is released which may cause VOP_INACTIVE( ) to be called. Depending on the operation, more arguments may be sent with the command which are in turn passed to the VOP routine, but the workflow is the same.


The nfs_lookup( ) operation also differs significantly. When an nfs_lookup( ) call is made, the NFS server first receives the lookup command, a file identifier or file handle representing the directory in which the lookup is to be performed and a file name. The file identifier or file handle is used to obtain a directory vnode via the VNODE_FROM_FID( ) pseudo-API. Then the directory vnode is passed to VOP_LOOKUP( ) along with the file name to obtain a vnode to the desired file. The VNODE_TO_FID( ) pseudo-API is then called to obtain a file identifier from the desired file's vnode. Both the directory vnode and the desired file's vnode are then released which may cause VOP_INACTIVE( ) to be called for either vnode or both. Finally, the desired file's file identifier or NFS file handle is sent back to the NFS client.


This presents an issue for any application that needs to look up the absolute path name using the RNLC 450: the NFS dispatch table module 460 releases the vnode pointer after performing an NFS_lookup function. To keep the RNLC tables from growing indefinitely, the RNLC 450 also removes the vnode pointer from the table structure 455. Accordingly, a vnode pointer will not be found that can resolve the NFS fid to a file and absolute path name. Thus, if a file of interest is being monitored, it is not possible to report the change in terms of a name and absolute path name.


When attempting a delete operation, the NFS dispatch table module 460 performs a VNOD_FROM_FID( ) operation to obtain a vnode. It is the new vnode that is used to perform a delete operation. Because this operation is performed without performing a VOP_LOOKUP operation, the new vnode pointer is not found in the vp table 452.


To handle the above described problem of vnodes not being found in the vp table 452, a fid table 454 is included as part of the table structure 455. When a vnode is to be removed from the VFS layer 420, the function VOP_INACTIVE( ) is called to release the vnode. The VOP_INACTIVE( ) function is intercepted (hooked) to intercept function calls to release vnodes. When VOP_INACTIVE( ) is called, the fid for the vnode pointer is determined and stored with the associated information for the name and absolute path name in the fid table entries 454 of the table structure 455.



FIG. 5 shows a computer system 500 in accordance with one embodiment of the invention. The computer system 500 is configured to execute the Reverse Name Lookup Cache (RNLC) method 600 of FIG. 6A. The computer system 500 includes one or more processors or processing units 520, a system memory 510, and a bus 525 that couples various system components, including the system memory 510, to the processor 520.


The bus 525 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. The system memory 510 includes read only memory (ROM) 511 and random access memory (RAM) 513. A basic input/output system (BIOS) 512, containing the basic routines that help to transfer information between elements within the computer system 500, such as during start-up, is stored in ROM 511. The computer system 500 further includes a storage device 532 for reading from and writing to a hard disk (not shown) connected to the bus 525 via a hard disk drive interface 530 (e.g., a SCSI, ATA, or other type of interface). Additionally, removable recording media are contemplated, including a magnetic disk drive (not show) for reading from and writing to a removable magnetic disk (not shown), connected to bus 525 via a magnetic disk drive interface (not shown); and an optical disk drive (not shown) for reading from and/or writing to a removable optical disk such as a CD ROM, DVD, or other optical media, connected to the bus 525 via an optical drive interface (not shown). The drives and their associated computer-readable media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for the computer system 500. Although the exemplary environment described herein employs a hard disk, it will be appreciated by those skilled in the art that other types of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, random access memories (RAMs), read only memories (ROM), and the like, may also be used in the exemplary operating environment.


A number of program modules are stored on the storage 532, magnetic disk, optical disk (not shown), ROM 511, or RAM 513, including an operating system 514 having a file system with a virtual machine abstraction, one or more application programs 515 that can include a File Change Monitoring application, other program modules 516, and program data modules 518. A user may enter commands and information into the computer system 500 through input devices such as a keyboard 562 and a pointing device 563. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are connected to the processing unit 520 through an interface 560 that is coupled to the system bus 525 (e.g., a serial port interface, a parallel port interface, a universal serial bus (USB) interface, etc.). A terminal 545 or other type of display device is also connected to the system bus 525 via an interface, such as a video interface 540. In addition to the terminal 545, personal computers typically include other peripheral output devices (not shown) such as speakers and printers.



FIG. 6A illustrates the steps of a method of populating a table structure 600 used for the reverse name lookup of a vnode reference in accordance with one embodiment of the invention. A vnode reference can be a vnode structure, an indirect reference to a vnode, or preferably a pointer to a vnode.


The method begins at a start step 601. The step 601 can include initialization of variables, software states, and hardware. In the step 601 a hook is inserted into the execution path of calls to the virtual file system to capture some or all of the functional calls.


In a step 610, a call to the virtual file system is intercepted by code in the execution path of the virtual file system. Two particular functions of interest are represented by the pseudo code names VOP_LOOKUP 622 and VOP_INACTIVE 624.


In the step 620, the method determines the type of VFS function call that is made. This determination can be made by different components or combination of components. If the implementation of the functional calls to the VFS are in a single module, the code for performing the step 620 is placed in this module. If the implementation of the interface is through multiple modules, the code for performing the step 620 can be placed in each of the multiple modules.


If in the step 620 it is determined that the VFS function is a VOP_LOOKUP(vp, “name”) function call, then the returned vnode pointer, the name, and the absolute path information associated with the vp are stored in the table structure 455 of FIG. 4 in the step 630. In one embodiment, the absolute path information is the vp that was used to get the vnode information. In another embodiment, this information is a pointer to the table structure entry that contains information about the directory in which the name is found. This relationship can be used to form a link from file to directory, and to the next directory, and on up to the root directory, thereby providing sufficient information for generating the absolute path name. FIG. 7B shows such a table in accordance with one embodiment of the invention. In another embodiment, for each vnode reference in the table, the absolute path name is determined and stored with the vnode reference in the table structure as shown in FIG. 7A.


If in the step 620, it is determined that the VFS function 620 is a VOP_INACTIVE(vp) function call, the method continues to the step 640. The VOP_INACTIVE function call may indicate Network File System (NFS) activity. The reason for this is that the NFS_LOOKUP function uses a directory fid in a VOP_LOOKUP( ) function to determine a vnode pointer. The vnode pointer is used to resolve the fid for the file name. Then the determined vnode pointer is made inactive. Subsequent NFS operations use the fid in subsequent operations. The VP_INACTIVE( ) function is intercepted so that the determined fid for the vnode and the associated information are stored in the fid table 454 of FIG. 4. Thus, the table structure can provide an absolute path name and file name for a referenced file identifier (fid).


From both steps 630 and 640, the process proceeds to the step 690, in which it ends. In the step 690, any required memory management cleanup or reconfiguration is performed. Alternatively or additionally, the step 690 performs caching functions such as removing the least recently used vnode references if the cache size exceeds a threshold. Also, the fids in the table structure 455 of FIG. 4 can be managed as a cache and the least recently used fid and associated information removed if the number of entries exceeds a threshold.


The method described above is simplified. In other embodiments, there can be additional virtual file system functions that are intercepted and other information extracted and stored in the table structure that is important to the determination of the file name and absolute path name for a vnode.



FIG. 6B illustrates the steps of a process of determining the file name and absolute path name for a vnode pointer in accordance with one embodiment of the invention.


The process begins at a start step 650. The step 650 can include initialization of variables, software states, and any required hardware initialization. The method is given a vnode pointer for which the corresponding file name and absolute path name is to be determined. The process also contemplates determining a partial path name. Referring to FIG. 4, the step searching the vp table 652 searches for the matching vp within the vp table 452. Any standard search algorithm that appropriate for the table organization can be used. A decision is made 654 based on finding or not finding the vnode pointer. If the vnode pointer is found in the vp table the process proceeds to the step 659. If the vnode pointer is not found, then the process proceeds to step 657.


In the step 657 the vp is converted to a fid. The fid is provided to the next step 658 which searches the fid table for a matching fid. The search can be any method that is appropriate for the organization of the fid table 454. The process proceeds to a step 659 where the table reference for for the matching fid is used to determine the file name and absolute path name.


In a step 659, the vp or fid table reference to either the matching vnode pointer or matching fid is used to determine the file name, or absolute path name. The process proceeds to an ending step 660. This step can include any required memory clean up and returning the determined file name and absolute path name.



FIGS. 7A and 7B are two example implementations of a memory resident the table structure 700 and 750 of the table structure of 455 of FIG. 4, in accordance with embodiments of the invention. The table structure 700 has 6 rows 700A-F, each with 3 elements: vp or fd in the first column 710, a name element 720, and path information 730. Using (row, column) pairs to refer to the elements in table 700, the vp1 element (700A, 710) corresponds to the “usr” (700A, 720) in the “name” column 720. The elements in the “name” column 720 are one of a directory name, and a file name. The elements (700A-C, 730) in the path information column 730 comprises a text string with the complete absolute path name. In the first row 700A, the “path info” (700A, 730) for the “usr” (700A, 720) directory is “/”. For vp2 (700B, 710), the associated absolute path name (700B, 730) for “foo” (700B, 720) is “usr/”. For the file “bar” the full absolute path name (700C, 730) is “/usr/foo/”. The same relationship between the file identifier elements (700D-F, 710) and the name element (700D-F, 720) and the “path info” elements (700D-F, 730) holds true.


Referring to FIG. 7B, the first two columns 760 and 770 have the same elements 710 and 720 as in FIG. 7A. The path information column 780 is implemented with a different structure. In the first row 750A, the “path info” (750A, 780) is a null value indicating a root directory. In the second row 750B, the “path info” (750B, 780) is “vp1”, the vnode pointer for the first row. Thus, to generate the absolute path name for the second row vnode (750B, 760) “vp2”, the vp1 vnode pointer (750A, 760) is located, and the name element (750A, 770) “usr” is pre-appended to the path information (750B, 770) “foo” with the required directory slashes, which forms the absolute path name “/usr/foo”. For the third row 750C, the absolute path is generated by using the path information (750C, 780) to locate the vp2. The “name” element of vp2 (750B,770) forms the directories in the absolute path name. The path info (750B, 780) for the vp2 is used in the same manner to determine the rest of the absolute path name. The two configurations of the table structures 700 and 750 are for illustrative purposes. The two table configurations are illustrative of sufficient information for generating a file name and absolute path name for a vnode pointer. Other embodiments of a table structure are contemplated. The path info (750A-F) can comprise pointer, indexes, or other information sufficient to build an absolute path name for the vnode pointer, NFS file handle, or file identifier.


Referring again to FIG. 4, in operation the RNLC 450 is used in support of file system applications or modifications to the file system that need to translate vnode pointers, fids, or both to file names and absolute path names. In one example, an application (not shown) makes a call to the virtual file system 420 to open the file. The application communicates with the virtual file system 420 through the SYSTEM_CALL module 410. A call to open the file “/usr/foolbar” results in a series for VOP_LOOKUP calls 411 to the VFS layer 420 to resolve the vnode for each directory in the absolute path name and file name.


The file system 400 is configured with a hook 422 in the functional path between the SYSTEM_CALL module 410 and the VFS layer 420. The hook 422 intercepts some or all of the function calls to the VFS layer 420. In some embodiments, the hook 422 is part of or coupled to an application that monitors changes to files within the computer system (not shown). The information used in the VOP_LOOKUP 411 function call is captured and used to populate the vp table 452 of the table structure 455. Populating the vp table 452 is controlled by a function 456 which is part of the RNLC 450. The vnode pointer is used to populate the vp table 452 with the associated name and associated path information. The VOP_LOOKUP 411 is passed on to the VFS layer 420 which returns a vnode pointer for use by the file system 400.


The system monitoring application, which in the shown embodiment is part of the VFS hook module 422, utilizes the RNLC 450 to translate a vnode or vnode pointer to a file name and an absolute path name. The translation is performed by a function call 421 to the RNLC 450. The call invokes the translation function 456.


The translation module 456 of the RNLC 450 searches the vp table 452 to find the requested vnode pointer. The organization of the vp's within the table can follow any common know organizational scheme for fast lookup. Once the vp is found, the associated name and absolute path name information are generated and returned 451.


If the hook 422 intercepts a VOP_INACTIVE function call to the VFS 420, then the associated vp is converted to a fid using a virtual file system function, referred to here as VOP_2_FID(vp), and transferred to the fid table 454 along with the associated name and absolute path information.


If an NFS operation occurs, such as an NFS_DELETE 462, an NFS operation using a fid is generated. The fid is turned into a vp. However, the vp generation step does not utilize the VOP_LOOKUP call and accordingly the vp will not be loaded into the vp table 452. When a request for a translation of a vp occurs, and if the vp is not found, the translation module 458 searches the fid table 454 to find the fid corresponding to the requested vp. The fid table 454 is used to generate an associated name and absolute path name for the fid. The RNLC 450 includes a module 458 for converting a vp or fid into an absolute path name.


In some embodiments, all functions discussed are stored in computer-readable media containing computer-executable instructions and a processor for executing the functions.


Reference has been made in detail to the preferred and alternative embodiments of the invention, examples of which are illustrated in the accompanying drawings. It will be readily apparent to one skilled in the art that other modifications may be made to the embodiment without departing from the spirt and scope of the invention as defined by the appended claims. The invention is intended to cover alternatives, modifications and equivalents, which can be included within the spirit and scope of the invention. Furthermore, in the detailed description of the present invention, numerous specific details have been set forth in order to provide a thorough understanding of the present invention. However, it should be noted that the present invention can be practiced without these specific details. In other instances, well known methods, procedures and components have not been described in detail so as not to unnecessarily obscure aspects of the present invention.

Claims
  • 1. Logic encoded in a non-transitory computer-readable storage medium and, when executed by a computer processor, is operable to perform operations of reverse mapping virtual node (vnode) pointers, comprising: using a reverse name lookup cache (RNLC) to translate vnode pointers and file identifiers into file names and absolute path names, the operations comprising: intercepting a first function call into a virtual file system layer, wherein the first function call includes a first name of a file and first path name information associated with a first file reference of the file, and wherein the first intercepted function call is processed in the virtual file system layer to return the first file reference;populating a first entry of a table structure with the first file reference, the first name, and the first path name information, wherein the table holds one or more file references, names, and path name information, wherein one or more entries in the table structure have sufficient information to determine an absolute path name to the file,the table structure is organized into a vnode pointer (vp) table and a file identifier (fid) table, wherein each vp entry in the vp table comprises a vnode reference and absolute path information associated with a corresponding vnode, andeach fid entry in the fid table comprises a file structure and absolute path information associated with a corresponding fid; andconverting a particular vnode reference to a particular file identifier upon trapping a function call inactivating a corresponding vnode, wherein the table structure is further populated with a particular file name associated with the corresponding inactivated vnode.
  • 2. The logic of claim 1, wherein the one or more file references in the table structure are vnode references, Network File System (NFS) file handles, file identifier references, or a combination thereof.
  • 3. The logic of claim 2, further comprising: the determining the absolute path name to the file from at least one of the vnode references or at least one of the file identifier references in the table structure.
  • 4. The logic of claim 1, wherein the processor is operable to perform further operations comprising: intercepting a second function call into the virtual file system layer, wherein the second function call is intercepted before the first function call, wherein the second function call includes a second name of a directory of the file and second path name information associated with a second file reference of the directory, and wherein the second intercepted function call is processed in the virtual file system layer to return the second file reference; andpopulating a second entry of the table structure with the second file reference, the second name, and the second path name information.
  • 5. A method for reverse mapping virtual node (vnode) pointers comprising: using a reverse name lookup cache (RNLC) to translate vnode pointers and file identifiers into file names and absolute path names, the operations comprising: intercepting a first function call into a virtual file system layer, wherein the first function call includes a first name of a file and first path name information associated with a first file reference of the file, and wherein the first intercepted function call is processed in the virtual file system layer to return the first file reference;populating a first entry of a table structure with the first file reference, the first name, and the first path name information, wherein the table holds one or more file references, names, and path name information, wherein one or more entries in the table structure have sufficient information to determine an absolute path name to the file,the table structure is organized into a vnode pointer (vp) table and a file identifier (fid) table, wherein each vp entry in the vp table comprises a vnode reference and absolute path information associated with a corresponding vnode, andeach fid entry in the fid table comprises a file structure and absolute path information associated with a corresponding fid; andconverting a particular vnode reference to a particular file identifier upon trapping a function call inactivating a corresponding vnode, wherein the table structure is further populated with a particular file name associated with the corresponding inactivated vnode.
  • 6. The method of claim 5, wherein the one or more file references in the table structure are vnode references, Network File System (NFS) file handles, file identifier references, or a combination thereof.
  • 7. The method of claim 5, further comprising: determining the absolute path name to the file from at least one of the vnode references or at least one of the file identifier references in the table structure.
  • 8. The method of claim 5, further comprising: intercepting a second function call into the virtual file system layer, wherein the second function call is intercepted before the first function call, wherein the second function call includes a second name of a directory of the file and second path name information associated with a second file reference of the directory, and wherein the second intercepted function call is processed in the virtual file system layer to return the second file reference; andpopulating a second entry of the table structure with the second file reference, the second name, and the second path name information.
  • 9. The method of claim 8, wherein the absolute path name to the file is determined from the first name and an absolute path name to the directory.
  • 10. The method of claim 5, wherein the first path name information includes one of the absolute path name to the file or a linkage to one or more other entries in the table structure containing at least part of the absolute path name to the file.
  • 11. The method of claim 5, wherein the first function call is a vnode lookup operation with a first name parameter representing the file, wherein the vnode lookup operation returns a vnode pointer for the file, and wherein the first file reference stored in the first entry is a vnode reference representing the vnode pointer for the file.
  • 12. The method of claim 5, wherein the first function call is a vnode release operation with a first vnode parameter, wherein a file identifier corresponding to the first vnode parameter is determined, and wherein the first file reference stored in the first entry of the table structure is a file identifier reference representing the corresponding file identifier.
  • 13. A computer device for reverse mapping virtual node (vnode) pointers comprising: a table structure configured to store one or more entries, each entry including a file reference, a name, and path information;a program module for populating the table structure; andone or more computer processors operable to execute operations associated with the table structure and the program module using a reverse name lookup cache (RNLC) to translate the vnode pointers and file identifiers into file names and absolute path names, the operations comprising: intercepting a first function call into a virtual file system layer, wherein the first function call includes a first name of a file and first path name information associated with a first file reference of the file, and wherein the first intercepted function call is processed in the virtual file system layer to return the first file reference; andpopulating a first entry of the table structure with the first file reference, the first name, and the first path name information, wherein one or more entries in the table structure have sufficient information to determine an absolute path name to the file,the table structure is organized into a vnode pointer (vp) table and a file identifier (fid) table, wherein each vp entry in the vp table comprises a vnode reference and absolute path information associated with a corresponding vnode, andeach fid entry in the fid table comprises a file structure and absolute path information associated with a corresponding fid; andconverting a particular vnode reference to a particular file identifier upon trapping a function call inactivating a corresponding vnode, wherein the table structure is further populated with a particular file name associated with a the corresponding inactivated vnode.
  • 14. The computer device of claim 13, wherein the first file reference is a vnode reference, a Network File System (NFS) file handle, or a file identifier reference.
  • 15. The computer device of claim 14, wherein the one or more processors are operable to perform further operations comprising: the determining the absolute path name to the file in response to receiving a vnode reference or a file identifier reference.
  • 16. The computer device of claim 13, wherein the one or more processors are operable to perform further operations comprising: intercepting a second function call into the virtual file system layer, wherein the second function call is intercepted before the first function call, wherein the second function call includes a second name of a directory of the file and second path name information associated with a second file reference of the directory, and wherein the second intercepted function call is processed in the virtual file system layer to return the second file reference; andpopulating a second entry of the table structure with the second file reference, the second name, and the second path name information.
  • 17. The computer device of claim 16, wherein the absolute path name to the file is determined from the first name and an absolute path name to the directory.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) of the co-owned U.S. Provisional Patent Application, Ser. No. 61/124,731 filed Apr. 18, 2008, and entitled “MULTI-LEVEL NAME RESOLUTION,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (244)
Number Name Date Kind
4688169 Joshi Aug 1987 A
4982430 Frezza et al. Jan 1991 A
5155847 Kirouac et al. Oct 1992 A
5222134 Waite et al. Jun 1993 A
5390314 Swanson Feb 1995 A
5521849 Adelson et al. May 1996 A
5560008 Johnson et al. Sep 1996 A
5699513 Feigen et al. Dec 1997 A
5778226 Adams et al. Jul 1998 A
5778349 Okonogi Jul 1998 A
5787427 Benantar et al. Jul 1998 A
5842017 Hookway et al. Nov 1998 A
5907709 Cantey et al. May 1999 A
5907860 Garibay et al. May 1999 A
5926832 Wing et al. Jul 1999 A
5974149 Leppek Oct 1999 A
5987610 Franczek et al. Nov 1999 A
5987611 Freund Nov 1999 A
5991881 Conklin et al. Nov 1999 A
6064815 Hohensee et al. May 2000 A
6073142 Geiger et al. Jun 2000 A
6141698 Krishnan et al. Oct 2000 A
6192401 Modiri et al. Feb 2001 B1
6192475 Wallace Feb 2001 B1
6256773 Bowman-Amuah Jul 2001 B1
6275938 Bond et al. Aug 2001 B1
6321267 Donaldson Nov 2001 B1
6338149 Ciccone, Jr. et al. Jan 2002 B1
6356957 Sanchez, II et al. Mar 2002 B2
6393465 Leeds May 2002 B2
6442686 McArdle et al. Aug 2002 B1
6449040 Fujita Sep 2002 B1
6453468 D'Souza Sep 2002 B1
6460050 Pace et al. Oct 2002 B1
6587877 Douglis et al. Jul 2003 B1
6611925 Spear Aug 2003 B1
6662219 Nishanov et al. Dec 2003 B1
6748534 Gryaznov et al. Jun 2004 B1
6769008 Kumar et al. Jul 2004 B1
6769115 Oldman Jul 2004 B1
6795966 Lim et al. Sep 2004 B1
6832227 Seki et al. Dec 2004 B2
6834301 Hanchett Dec 2004 B1
6847993 Novaes et al. Jan 2005 B1
6907600 Neiger et al. Jun 2005 B2
6918110 Hundt et al. Jul 2005 B2
6930985 Rathi et al. Aug 2005 B1
6934755 Saulpaugh et al. Aug 2005 B1
6988101 Ham et al. Jan 2006 B2
6988124 Douceur et al. Jan 2006 B2
7007302 Jagger et al. Feb 2006 B1
7010796 Strom et al. Mar 2006 B1
7024548 O'Toole, Jr. Apr 2006 B1
7039949 Cartmell et al. May 2006 B2
7065767 Kambhammettu et al. Jun 2006 B2
7069330 McArdle et al. Jun 2006 B1
7082456 Mani-Meitav et al. Jul 2006 B2
7093239 van der Made Aug 2006 B1
7124409 Davis et al. Oct 2006 B2
7139916 Billingsley et al. Nov 2006 B2
7152148 Williams et al. Dec 2006 B2
7159036 Hinchliffe et al. Jan 2007 B2
7177267 Oliver et al. Feb 2007 B2
7203864 Goin et al. Apr 2007 B2
7251655 Kaler et al. Jul 2007 B2
7290266 Gladstone et al. Oct 2007 B2
7302558 Campbell et al. Nov 2007 B2
7330849 Gerasoulis et al. Feb 2008 B2
7346781 Cowle et al. Mar 2008 B2
7349931 Horne Mar 2008 B2
7350204 Lambert et al. Mar 2008 B2
7353501 Tang et al. Apr 2008 B2
7363022 Whelan et al. Apr 2008 B2
7370360 van der Made May 2008 B2
7406517 Hunt et al. Jul 2008 B2
7441265 Staamann et al. Oct 2008 B2
7464408 Shah et al. Dec 2008 B1
7506155 Stewart et al. Mar 2009 B1
7506170 Finnegan Mar 2009 B2
7506364 Vayman Mar 2009 B2
7546333 Alon et al. Jun 2009 B2
7546594 McGuire et al. Jun 2009 B2
7552479 Conover et al. Jun 2009 B1
7577995 Chebolu et al. Aug 2009 B2
7607170 Chesla Oct 2009 B2
7657599 Smith Feb 2010 B2
7669195 Qumei Feb 2010 B1
7685635 Vega et al. Mar 2010 B2
7698744 Fanton et al. Apr 2010 B2
7703090 Napier et al. Apr 2010 B2
7757269 Roy-Chowdhury et al. Jul 2010 B1
7765538 Zweifel et al. Jul 2010 B2
7783735 Sebes et al. Aug 2010 B1
7809704 Surendran et al. Oct 2010 B2
7818377 Whitney et al. Oct 2010 B2
7823148 Deshpande et al. Oct 2010 B2
7836504 Ray et al. Nov 2010 B2
7840968 Sharma et al. Nov 2010 B1
7849507 Bloch et al. Dec 2010 B1
7856661 Sebes et al. Dec 2010 B1
7865931 Stone et al. Jan 2011 B1
7870387 Bhargava et al. Jan 2011 B1
7873955 Sebes Jan 2011 B1
7895573 Bhargava et al. Feb 2011 B1
7908653 Brickell et al. Mar 2011 B2
7937455 Saha et al. May 2011 B2
7966659 Wilkinson et al. Jun 2011 B1
7996836 McCorkendale et al. Aug 2011 B1
8015388 Rihan et al. Sep 2011 B1
8015563 Araujo et al. Sep 2011 B2
8195931 Sharma et al. Jun 2012 B1
8234713 Roy-Chowdhury et al. Jul 2012 B2
8307437 Sebes et al. Nov 2012 B2
8321932 Bhargava et al. Nov 2012 B2
8332929 Bhargava et al. Dec 2012 B1
8381284 Dang et al. Feb 2013 B2
20020056076 van der Made May 2002 A1
20020069367 Tindal et al. Jun 2002 A1
20020083175 Afek et al. Jun 2002 A1
20020099671 Mastin et al. Jul 2002 A1
20030014667 Kolichtchak Jan 2003 A1
20030023736 Abkemeier Jan 2003 A1
20030033510 Dice Feb 2003 A1
20030073894 Chiang et al. Apr 2003 A1
20030074552 Olkin et al. Apr 2003 A1
20030115222 Oashi et al. Jun 2003 A1
20030120601 Ouye et al. Jun 2003 A1
20030120811 Hanson et al. Jun 2003 A1
20030120935 Teal et al. Jun 2003 A1
20030145232 Poletto et al. Jul 2003 A1
20030163718 Johnson et al. Aug 2003 A1
20030167292 Ross Sep 2003 A1
20030167399 Audebert et al. Sep 2003 A1
20030200332 Gupta et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030220944 Schottland et al. Nov 2003 A1
20030221190 Deshpande et al. Nov 2003 A1
20040003258 Billingsley et al. Jan 2004 A1
20040015554 Wilson Jan 2004 A1
20040051736 Daniell Mar 2004 A1
20040054928 Hall Mar 2004 A1
20040143749 Tajalli et al. Jul 2004 A1
20040167906 Smith et al. Aug 2004 A1
20040230963 Rothman et al. Nov 2004 A1
20040243678 Smith et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20050018651 Yan et al. Jan 2005 A1
20050086047 Uchimoto et al. Apr 2005 A1
20050108516 Balzer et al. May 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114672 Duncan et al. May 2005 A1
20050132346 Tsantilis Jun 2005 A1
20050228990 Kato et al. Oct 2005 A1
20050235360 Pearson Oct 2005 A1
20050257207 Blumfield et al. Nov 2005 A1
20050257265 Cook et al. Nov 2005 A1
20050260996 Groenendaal Nov 2005 A1
20050262558 Usov Nov 2005 A1
20050273858 Zadok et al. Dec 2005 A1
20050283823 Okajo et al. Dec 2005 A1
20050289538 Black-Ziegelbein et al. Dec 2005 A1
20060004875 Baron et al. Jan 2006 A1
20060015501 Sanamrad et al. Jan 2006 A1
20060037016 Saha et al. Feb 2006 A1
20060080656 Cain et al. Apr 2006 A1
20060085785 Garrett Apr 2006 A1
20060101277 Meenan et al. May 2006 A1
20060133223 Nakamura et al. Jun 2006 A1
20060136910 Brickell et al. Jun 2006 A1
20060136911 Robinson et al. Jun 2006 A1
20060195906 Jin et al. Aug 2006 A1
20060200863 Ray et al. Sep 2006 A1
20060230314 Sanjar et al. Oct 2006 A1
20060236398 Trakic et al. Oct 2006 A1
20060259734 Sheu et al. Nov 2006 A1
20070011746 Malpani et al. Jan 2007 A1
20070028303 Brennan Feb 2007 A1
20070039049 Kupferman et al. Feb 2007 A1
20070050579 Hall et al. Mar 2007 A1
20070050764 Traut Mar 2007 A1
20070074199 Schoenberg Mar 2007 A1
20070083522 Nord et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070136579 Levy et al. Jun 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070169079 Keller et al. Jul 2007 A1
20070192329 Croft et al. Aug 2007 A1
20070220061 Tirosh et al. Sep 2007 A1
20070220507 Back et al. Sep 2007 A1
20070253430 Minami et al. Nov 2007 A1
20070256138 Gadea et al. Nov 2007 A1
20070271561 Winner et al. Nov 2007 A1
20070300215 Bardsley Dec 2007 A1
20080005737 Saha et al. Jan 2008 A1
20080005798 Ross Jan 2008 A1
20080010304 Vempala et al. Jan 2008 A1
20080022384 Yee et al. Jan 2008 A1
20080034416 Kumar et al. Feb 2008 A1
20080052468 Speirs et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080120499 Zimmer et al. May 2008 A1
20080141371 Bradicich et al. Jun 2008 A1
20080163207 Reumann et al. Jul 2008 A1
20080163210 Bowman et al. Jul 2008 A1
20080165952 Smith et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080235534 Schunter et al. Sep 2008 A1
20080294703 Craft et al. Nov 2008 A1
20080301770 Kinder Dec 2008 A1
20090007100 Field et al. Jan 2009 A1
20090038017 Durham et al. Feb 2009 A1
20090043993 Ford et al. Feb 2009 A1
20090055693 Budko et al. Feb 2009 A1
20090113110 Chen et al. Apr 2009 A1
20090144300 Chatley et al. Jun 2009 A1
20090150639 Ohata Jun 2009 A1
20090249053 Zimmer et al. Oct 2009 A1
20090249438 Litvin et al. Oct 2009 A1
20100071035 Budko et al. Mar 2010 A1
20100100970 Chowdhury et al. Apr 2010 A1
20100114825 Siddegowda May 2010 A1
20100250895 Adams et al. Sep 2010 A1
20100281133 Brendel Nov 2010 A1
20100293225 Sebes et al. Nov 2010 A1
20100332910 Ali et al. Dec 2010 A1
20110029772 Fanton et al. Feb 2011 A1
20110035423 Kobayashi et al. Feb 2011 A1
20110047543 Mohinder Feb 2011 A1
20110077948 Sharma et al. Mar 2011 A1
20110078550 Nabutovsky Mar 2011 A1
20110093842 Sebes Apr 2011 A1
20110093950 Bhargava et al. Apr 2011 A1
20110119760 Sebes et al. May 2011 A1
20110138461 Bhargava et al. Jun 2011 A1
20120030731 Bhargava et al. Feb 2012 A1
20120030750 Bhargava et al. Feb 2012 A1
20120278853 Chowdhury et al. Nov 2012 A1
20120290827 Bhargava et al. Nov 2012 A1
20120297176 Bhargava et al. Nov 2012 A1
20130024934 Sebes et al. Jan 2013 A1
20130091318 Bhattacharjee et al. Apr 2013 A1
20130097355 Dang et al. Apr 2013 A1
20130097356 Dang et al. Apr 2013 A1
20130117823 Dang et al. May 2013 A1
Foreign Referenced Citations (10)
Number Date Country
1 482 394 Dec 2004 EP
2 037 657 Mar 2009 EP
WO 9844404 Oct 1998 WO
WO 0184285 Nov 2001 WO
WO 2006012197 Feb 2006 WO
WO 2006124832 Nov 2006 WO
WO 2008054997 May 2008 WO
WO 2011059877 May 2011 WO
WO 2012015485 Feb 2012 WO
WO 2012015489 Feb 2012 WO
Non-Patent Literature Citations (47)
Entry
Kurt Gutzmann, “Access Control and Session Management in the HTTP Environment,” Jan./Feb. 2001, pp. 26-35, IEEE Internet Computing.
U.S. Appl. No. 11/379,953, entitled “Software Modification by Group to Minimize Breakage,” filed Apr. 24, 2006, Inventor(s): E. John Sebes et al.
U.S. Appl. No. 11/277,596, entitled “Execution Environment File Inventory,” filed Mar. 27, 2006, Inventor(s): Rishi Bhargava et al.
U.S. Appl. No. 10/651,591, entitled “Method and System for Containment of Networked Application Client Software by Explicit Human Input,” filed Aug. 29, 2003, Inventor(s): Rosen Sharma et al.
U.S. Appl. No. 10/806,578, entitled Containment of Network communication, filed Mar. 22, 2004, Inventor(s): E. John Sebes et al.
U.S. Appl. No. 10/739,230, entitled “Method and System for Containment of Usage of Language Interfaces,” filed Dec. 17, 2003, Inventor(s): Rosen Sharma et al.
U.S. Appl. No. 10/935,772, entitled “Solidifying the Executable Software Set of a Computer,” filed Sep. 7, 2004, Inventor(s): E. John Sebes et al.
U.S. Appl. No. 11/060,683, entitled “Distribution and Installation of Solidified Software on a Computer,” filed Feb. 16, 2005, Inventor(s): Bakul Shah et al.
U.S. Appl. No. 11/122,872, entitled “Piracy Prevention Using Unique Module Translation,” filed May 4, 2005, Inventor(s): E. John Sebes et al.
U.S. Appl. No. 11/346,741, entitled “Enforcing Alignment of Approved Changes and Deployed Changes in the Software Change Life-Cycle,” filed Feb. 2, 2006, Inventor(s): Rahul Roy-Chowdhury et al.
U.S. Appl. No. 11/182,320, entitled “Classification of Software on Networked Systems,” filed Jul. 14, 2005, Inventor(s): E. John Sebes et al.
U.S. Appl. No. 11/400,085, entitled “Program-Based Authorization,” filed Apr. 7, 2006, Inventor(s): Rishi Bhargava et al.
U.S. Appl. No. 11/437,317, entitled “Connectivity-Based Authorization,” filed May 18, 2006, Inventor(s): E. John Sebes et al.
U.S. Appl. No. 12/290,380, entitled “Application Change Control,” filed Oct. 29, 2008, Inventor(s): Rosen Sharma et al.
U.S. Appl. No. 12/008,274, entitled Method and Apparatus for Process Enforced Configuration Management, filed Jan. 9, 2008, Inventor(s): Rishi Bhargava et al.
U.S. Appl. No. 12/291,232, entitled “Method of and System for Computer System State Checks,” filed Nov. 7, 2008, inventor(s): Rishi Bhargava et al.
U.S. Appl. No. 12/322,220, entitled “Method of and System for Malicious Software Detection Using Critical Address Space Protection,” filed Jan. 29, 2009, Inventor(s): Suman Saraf et al.
U.S. Appl. No. 12/322,321, entitled “Method of and System for Computer System Denial-of-service Protection,” filed Jan. 29, 2009, Inventor(s): Suman Saraf et al.
U.S. Appl. No. 12/545,609, entitled “System and Method for Enforcing Security Policies in a Virtual Environment,” filed Aug. 21, 2009, Inventor(s): Amit Dang et al.
U.S. Appl. No. 12/545,745, entitled “System and Method for Providing Address Protection in a Virtual Environment,” filed Aug. 21, 2009, Inventor(s): Preet Mohinder.
Eli M. Dow, et al., “The Xen Hypervisor,” Informit, dated Apr. 10, 2008, http://www.informit.com/articles/printerfriendly.aspx?p=1187966, printed Aug. 11, 2009 (13 pages).
“Xen Architecture Overview,” Xen, dated Feb. 13, 2008, Version 1.2, http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+architecture—Q1+2008.pdf, printed Aug. 18, 2009 (9 pages).
U.S. Appl. No. 12/551,673, entitled “Piracy Prevention Using Unique Module Translation,” filed Sep. 1, 2009, Inventor(s): E. John Sebes et al.
U.S. Appl. No. 12/615,521, entitled “System and Method for Preventing Data Loss Using Virtual Machine Wrapped Applications,” filed Nov. 10, 2009, Inventor(s): Sonali Agarwal, et al.
Desktop Management and Control, Website: http://www.vmware.com/solutions/desktop/, printed Oct. 12, 2009, 1 page.
Secure Mobile Computing, Website: http://www.vmware.com/solutions/desktop/mobile.html, printed Oct. 12, 2009, 2 pages.
U.S. Appl. No. 12/636,414, entitled “System and Method for Managing Virtual Machine Configurations,” filed Dec. 11, 2009, Inventor(s): Harvinder Singh Sawhney, et al.
Barrantes et al., “Randomized Instruction Set Emulation to Dispurt Binary Code Injection Attacks,” Oct. 27-31, 2003, ACM, pp. 281-289.
Check Point Software Technologies Ltd.: “ZoneAlarm Security Software User Guide Version 9”, Aug. 24, 2009, XP002634548, 259 pages, retrieved from Internet: URL:http://download.zonealarm.com/bin/media/pdf/zaclient91—user—manual.pdf.
Gaurav et al., “Countering Code-Injection Attacks with Instruction-Set Randomization,” Oct. 27-31, 2003, ACM, pp. 272-280.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority (1 page), International Search Report (4 pages), and Written Opinion (3 pages), mailed Mar. 2, 2011, International Application No. PCT/US2010/055520.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (6 pages), and Written Opinion of the International Searching Authority (10 pages) for International Application No. PCT/US2011/020677 mailed Jul. 22, 2011.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (3 pages), and Written Opinion of the International Search Authority (6 pages) for International Application No. PCT/US2011/024869 mailed Jul. 14, 2011.
Tal Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for Trusted Computing,” XP-002340992, SOSP'03, Oct. 19-22, 2003, 14 pages.
U.S. Appl. No. 12/844,892, entitled “System and Method for Protecting Computer Networks Against Malicious Software,” filed Jul. 28, 2010, Inventor(s) Rishi Bhargava, et al.
U.S. Appl. No. 12/844,964, entitled “System and Method for Network Level Protection Against Malicious Software,” filed Jul. 28, 2010, Inventor(s) Rishi Bhargava, et al.
U.S. Appl. No. 12/880,125, entitled “System and Method for Clustering Host Inventories,” filed Sep. 12, 2010, Inventor(s) Rishi Bhargava, et al.
U.S. Appl. No. 12/903,993, entitled “Method and System for Containment of Usage of Language Interfaces,” filed Oct. 13, 2010, Inventor(s) Rosen Sharma, et al.
U.S. Appl. No. 12/946,344, entitled “Method and System for Containment of Usage of Language Interfaces,” filed Nov. 15, 2010, Inventor(s) Rosen Sharma, et al.
U.S. Appl. No. 13/012,138, entitled “System and Method for Selectively Grouping and Managing Program Files,” filed Jan. 24, 2011, Inventor(s) Rishi Bhargava, et al.
U.S. Appl. No. 13/037,988, entitled “System and Method for Botnet Detection by Comprehensive Email Behavioral Analysis,” filed Mar. 1, 2011, Inventor(s) Sven Krasser, et al.
IA-32 Intel® Architecture Software Developer's Manual, vol. 3B; Jun. 2006; pp. 13, 15, 22 and 145-146.
Notification of International Preliminary Report on Patentability and Written Opinion mailed May 24, 2012 for International Application No. PCT/US2010/055520, 5 pages.
Sailer et al., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems, IBM research Report, Feb. 2, 2005, 13 pages.
U.S. Appl. No. 13/558,181, entitled “Method and Apparatus for Process Enforced Configuration Management,” filed Jul. 25, 2012, Inventor(s) Rishi Bhargava et al.
U.S. Appl. No. 13/558,227, entitled “Method and Apparatus for Process Enforced Configuration Management,” filed Jul. 25, 2012, Inventor(s) Rishi Bhargava et al.
U.S. Appl. No. 13/558,277, entitled “Method and Apparatus for Process Enforced Configuration Management,” filed Jul. 25, 2012, Inventor(s) Rishi Bhargava et al.
Related Publications (1)
Number Date Country
20130246393 A1 Sep 2013 US
Provisional Applications (1)
Number Date Country
61124731 Apr 2008 US