1. Field of the Invention
The invention generally relates to a method of applying a metallic precursor on a titanium oxide coating. More particularly, the invention relates to a method of applying a metallic precursor on a titanium oxide coating to form a composite coating or structure.
2. Description of the Prior Art
The catalyst coating that may be evenly spread out in large areas and may be produced in high precision repeatedly has been a goal in the development and improvement of fuel cells. S. Towne and A. D. Taylor published two articles in the Journal of Power Sources about the manufacturing method by the use of ink printing to attain the result of catalyst application in an evenly spread-out and high-precision quantitative control manner for large areas. In the prior art, a composite ink containing metal and carbon is applied to the surface to be used as the catalyst for the fuel cell. Such method requires a precise control of the consistency and homogeneity in the viscosity level of the ink. Because nanometer-sized particles may stick together, this may affect the consistency in the ink's viscosity level and thus affect the accuracy of the printing. Moreover, this may clog up the nozzle.
From the above, we can see that the method of the prior art has many disadvantages and needs to be improved.
In the method of the present invention, titanium oxide in the form of membrane, nanometer-sized particles or powder is coated onto a substrate to form a preliminary titanium oxide coating. Then, a solution is formed containing a metallic precursor which is then apply in a small amount to the preliminary titanium oxide coating. Next, ultraviolet radiation is used on the substrate to reduce the metallic precursor to a metal (because titanium oxide can decompose the metallic precursor after the former is radiated with ultraviolet radiation). A membrane or spread-out clusters are formed on the preliminary titanium oxide coating.
The method of applying a metallic precursor to a titanium oxide coating to form a composite coating is disclosed. The method of the present invention comprises the following three steps:
Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
Please refer to
In the method of the present invention, a certain pattern of the composite coating may be accurately attained by controlling how the application device applies the solution on the preliminary coating. Regarding the structure of the composite coating, the metal 41 may be in the form of particles. These particles form small clusters or lumps scattered on top of the preliminary titanium oxide coating (as shown in
The solution 8 comprises at least the metallic precursor 4 and reducing agent 5. The addition of the dispersing agent 6 is determined by the type of intended result. The dispersing agent 6 may be water, ethanol (alcohol), ethylene glycol or other catalyst that can make the metal evenly spread out on top of the preliminary coating. The metallic precursor 4 may be hexachloroplatinic acid, gold tetrachloride, copper sulfate, silver nitrate or other compounds that may be reduced to a metal via photochemical reaction.
The final composite coating may be used as a conductive wire if it has a high content of metal. Because a certain pattern of the composite coating may be accurately attained as previously described, such composite coating may be used in the following applications to enhance performance. For example, such composite coating may be used as the electrodes in a proton exchange membrane fuel cell, used as the photocatalyst in sewage treatment or used for the electrodes in the dye-sensitized solar cell. Moreover, a plurality of the final composite coatings may be used as a capacitor.
Although a preferred embodiment of the present invention has been described in detail hereinabove, it should be understood that the preferred embodiment is to be regarded in an illustrative manner rather than a restrictive manner, and all variations and modifications of the basic inventive concepts herein taught still fall within the scope of the present invention.