This invention relates generally to containers for flowable materials, such as lubricants and adhesives, and more particularly for a specialized container and method for applying the flowable material of the container to a desired object.
In the past, the application of lubricants or adhesives to objects has involved expelling the lubricant or adhesive from a container—such as a tube, can, bag, or other structure—onto either the object itself or a separate applicator which is then used to coat the object. For example, the greasing of wheel bearings has usually involved scooping or otherwise removing the grease from a container and then spreading and packing with pressure the grease appropriately into the desired area. In some instances, the grease is first removed from a container and then put into a specialized grease gun before being applied to the desired object. As another example, it is sometimes desirable to coat the exterior of a screw or other type of fastener with an adhesive. This task has also involved removing the adhesive from the container and subsequently spreading it on the desired areas. In both instances, the tasks are often messy, time-consuming, and involve purchasing more lubricant or adhesive than is necessary. Other methods of applying flowable materials have involved dipping, dunking, painting or brushing on said materials to the workpiece either manually or with tools. Specialized applicators have also been used in the past, but such applicators add undue expense and further complicate the application process. The need can therefore be seen for a manner of substantially overcoming these and other disadvantages of the prior art.
Accordingly, the present invention provides an improved method and apparatus for dispensing flowable materials, such as grease, adhesives, or other substances. The present invention allows objects to be inserted directly into a container where they are covered with the flowable material by squeezing of the container.
According to one embodiment of the present invention, a method is provided for applying a flowable or viscous material to an object that includes providing a package having a pouch containing the flowable material; providing a removable seal that covers at least a portion of the pouch; and providing at least one flexible wall in the pouch. At least a portion of the seal is removed from the pouch and an object is inserted into the pouch. The pouch is squeezed to direct the flowable material onto the object and the object is then removed from the pouch.
According to another aspect of the invention, a package for flowable material is provided that includes at least one flexible wall and at least one opening for partially inserting an object to be coated with the flowable material. A plurality of integral structures are defined in the flexible walls and are adapted to retard spillover of the flowable material out of the package and to help retain the material within the package as pressure is exerted on the sidewalls.
In still other aspects of the invention, the flowable material may be a lubricant, such as grease, or an adhesive. The pouch may be shaped to correspond to the shape of the object to be covered by the flowable material. The object itself may be a bearing. The seal may be made of a flexible material that allows its use in wiping excess flowable material off of the object after it is removed from the pouch. The guide structure may include a plurality of ribs which may be shaped to conform to an exterior surface of the object. The pouch may also be doughnut shaped. The pouch may have integral structures to retard outflow of the material outside of the package during the squeezing compression. The container may also include a foldable flap that can be folded over an opening in the container after an object has been inserted therein to prevent outflow of the flowable material.
The method and package of the present invention provide an improved technique for applying flowable material to objects. Because the flowable material does not need to be removed from the package prior to being applied to the object, but instead allows direct transfer of the material from the pouch to the object, the messiness of the application process is reduced. Further, the size of the package can be set to provide a sufficient amount of flowable material for a single application, thus allowing the container to be discarded after use without leaving any, or very little, unused material. Further, the flowable material container is shaped to allow easy application of the material to the selected object. The package can also be manufactured in an inexpensive manner. These and other advantages of the present invention will be apparent to one skilled in the art in light of the following specification when read in conjunction with the accompanying drawings.
The present invention will now be described with reference to the accompanying drawings wherein the reference numerals in the following description correspond to like-numbered elements in the several drawings. A package 20 according to one embodiment of the present invention is depicted in
Sidewalls 24 and bottom wall 26 are generally flexible so that a person can squeeze these walls to expel the contents of pouch 28. Sidewalls 24 and bottom wall 26 may be made out of any suitable plastic material. Top 22 includes an opening 30 (
A plurality of ribs or guide structures 34 are defined in the bottom of pouch 28 and extend upwardly from bottom wall 26 and inwardly from sidewalls 24. Ribs 34 are illustrated as being generally straight and parallel to each other, with a generally uniform spacing between each of them. The shape, orientation, and spacing of ribs 34 can be varied from that illustrated in a wide variety of manners, some of which are more fully discussed below. Ribs 34 help direct the flow of the material in pouch 28 when it is to be expelled onto an object, such as a wheel bearing, or other type of object.
Seal 32 is preferably a hermetic seal that allows the contents of package 20 to be stored for long periods of time without contamination, spoliation, evaporation, or drying of the contents of package 20. When it is desired to use the flowable material inside of package 20, seal 32 is peeled away from top wall 22 (
After the object is sufficiently coated with the flowable material, it is retracted out of pouch 28. While retracting the object out of pouch 28, it may be desirable to squeeze together the sidewalls 24 so that edges 39 of sidewalls 24 contact the periphery of the object (
Bottom wall 26 also includes edges 38 adjacent its junction with top 22. Edges 38 may be positioned apart from each other slightly less than the diameter of the wheel bearing, or other disk-shaped object, so that they will have to flexibly expand away from each other slightly to accommodate the insertion of the wheel bearing. Edges 38 are thereby in contact with the outer periphery of the wheel bearing as it is removed from pouch 28. This contact causes edges 38 to scrape off excess grease from the bearing's periphery as it is removed from pouch 28. Edges 38 also help to prevent outflow of grease while pouch 28 is manually squeezed.
Package 20 therefore provides an easy and convenient method of storing flowable materials, as well as an easy and convenient applicator for transferring the stored material onto a desired object. Rather than having to first remove the material from the pouch and then spread it onto the object, package 20 allows the material to be applied while still in pouch 28, thereby reducing the messiness of the application process. For example, a bearing can easily be greased by way of package 20 by simply inserting the bearing into pouch 28, squeezing it, and thereafter removing the bearing from pouch 28. Very little, if any, grease will come into contact with the user's hands, and little or no effort needs to be made to ensure that the grease is distributed about the entirety of the bearing. Further, package 20 can be manufactured in a relatively inexpensive manner. Package 20 may be filled to only a fraction of its capacity with the flowable material in order to allow an object to be inserted therein initially without causing the flowable material to be expelled out of the package. The amount of flowable material may be chosen based on the intended application of the flowable material.
The size and shape of pouch 28 may vary substantially from that of package 20. As two additional examples, packages 20′ and 20″ are depicted in
The pouch may also include a raised center 42, such as that illustrated in package 20″. The presence of raised center 42 gives pouch 28″ a generally doughnut-shaped interior. Raised center 42 may desirably be dimensioned to fit within the central opening of the bearing to help prevent excessive grease from flowing through this opening when pouch 28″ is compressed. Raised center 42 may include a plurality of ribs or projections 34′ that are shaped and dimensioned to help guide the flowable material into the areas of the bearing to be greased. Additionally, package 20″ may include ribs or projections positioned on bottom wall 26″ (not shown) and/or ribs or projections positioned on sidewalls 24″ (also not shown).
Another embodiment of a package 20″ is depicted in
Another package 20″″ is depicted in
In any of the embodiments of the package of the present invention, the internal ribs 34, if included, may be dimensioned such that they generally conform to the shape of an exterior surface of the item to be coated. In some instances, such as when used with bearing grease, the pouch may have a volume that corresponds to the amount of grease that would normally be applied in one application of grease to the bearing. After application of the grease, little, if any, unused grease remains in the package and it can be discarded with minimal waste. Alternatively, package 20 may contain sufficient flowable material for multiple applications.
Sidewalls 24 are illustrated in the drawings as being straight and curved inwardly at their top ends. This orientation helps create the upper edges 39 that tend to remove excess flowable material when the object is removed from pouch 28. It will be understood that the shape of sidewalls 24 can vary significantly from that illustrated. As but one example, sidewalls 24 and bottom wall 26 could be joined together to form a single curved wall. Other variations are possible.
The ribs 34 in the various embodiments can also vary substantially from that depicted in the attached drawings. Ribs 34 may have different heights, widths, stiffnesses, spacings, and positions, from that shown in the drawings. In any of the possible variations of the ribs, the goal of the rib design is to help direct the flow of the material onto the object, rather than having the material flow internally in the pouch in response to pressure being applied to the pouch.
While the present invention has been described in terms of the preferred embodiments depicted in the drawings and discussed in the above specification, along with several alternative embodiments, it will be understood by one skilled in the art that the present invention is not limited to these particular embodiments, but include any and all such modifications that are within the spirit and the scope of the present invention as defined in the appended claims.
This application claims priority to commonly-titled U.S. provisional application serial No. 60/347,106, filed Jan. 9, 2002, the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1625968 | Ware | Apr 1927 | A |
2147349 | Piquerez | Feb 1939 | A |
2293589 | Calvert | Aug 1942 | A |
2901099 | Krieble | Aug 1959 | A |
2904419 | Couch et al. | Sep 1959 | A |
3029939 | Feldman | Apr 1962 | A |
3108433 | De Fries et al. | Oct 1963 | A |
3189227 | Hobbs et al. | Jun 1965 | A |
3254828 | Lerner | Jun 1966 | A |
3380578 | Sparks | Apr 1968 | A |
3469655 | Moreno | Sep 1969 | A |
3522177 | Benz | Jul 1970 | A |
3540579 | Hellstrom | Nov 1970 | A |
3634129 | Benz | Jan 1972 | A |
3931885 | Nahill et al. | Jan 1976 | A |
3963124 | Banks | Jun 1976 | A |
4026413 | Britt et al. | May 1977 | A |
4238541 | Burton | Dec 1980 | A |
4425065 | Sweeney | Jan 1984 | A |
4681222 | Longhenry | Jul 1987 | A |
D330326 | Honeycutt | Oct 1992 | S |
5405022 | Rissley | Apr 1995 | A |
Number | Date | Country |
---|---|---|
1344782 | Nov 1963 | FR |
1376625 | Oct 1964 | FR |
Number | Date | Country | |
---|---|---|---|
60347106 | Jan 2002 | US |