Method of assembling a modular current transformer

Information

  • Patent Grant
  • 6178617
  • Patent Number
    6,178,617
  • Date Filed
    Wednesday, December 23, 1998
    25 years ago
  • Date Issued
    Tuesday, January 30, 2001
    23 years ago
Abstract
A method for assembling a modular current transformer (17) includes providing a first bobbin (40A) having a first aperture (32A) disposed therein and a second bobbin (40B) having a second aperture (32B) disposed therein. The first axial aperture (32A) is aligned with the second axial aperture (32B), and a xontinuous wire (21) is wrapped sround the first bobbin (40A) in a first direction. With the first and second axial apertures (32A, 32B) still aligned, the continuous wire (21) is then wrapped around the second bobbin (40B) in a second direction opposite the first direction. The first bobbin (40A) is then inverted by pivoting the first bobbin (40A) about a flexible tab (33) that connects the first and second bobbins (40A, 40B). A transformer core (22) is then disposed through the first and second axial apertures (32A, 32B). The windings on the first and second bobbins (32A, 32B) form the secondary windings (20A, 20B) for the current transformer (17).
Description




BACKGROUND OF THE INVENTION




The use of electronic trip units in low-ampere industrial-rated circuit breakers has often been forestalled because of size constraints on the discreet electrical and electromagnetic components within the circuit breaker enclosure. The current transformer used in conjunction with the electronic trip unit, has a two-fold requirement namely, to provide an input signal to the trip unit representative of the current flow within the associated protected power circuit while providing the necessary input power to the trip unit power supply. A predetermined maximum core volume is required within the current transformer to ensure that the current transformer does not become magnetically saturated upon the occurrence of overcurrent conditions when used within compact circuit breakers having variable ampere ratings while a predetermined minimum core volume insures that the core will become sufficiently magnetized at the lower steady-state operating current levels.




With earlier-designed electronic trip circuit breakers, such as described within U.S. Pat. No. 4,281,359 entitled “Static Trip Unit for Molded Case Circuit Breakers”, for example, a standard trip unit circuit is employed over a wide range of ampere ratings while the size of the current transformer used to sense the input current to the trip unit circuit is correspondingly increased in proportion to the increased ampere rating.




When compact electronic trip unit circuit breakers employing various accessory devices, such as described in U.S. Pat. No. 4,754,247 entitled “Molded Case Circuit Breaker Accessory Enclosure”, are used within industrial rated power distribution circuits, the size constraints of the circuit breaker enclosure limit the geometry of the current transformer core to a size just sufficient to provide operating power to the electronic trip unit circuit without becoming saturated at the higher ampere ratings due to the low inductance of the smaller core. Another problem involved with the use of small-sized current transformer cores is the lack of sufficient core inductance to provide the requisite core magnetization for transformer operation at the lower ampere ratings.




U.S. Pat. No. 5,515,597 entitled “Method for Assembling a Current Transformer” describes a compact core arrangement for current transformers and the like that is accomplished by winding the secondary coils around the completed magnetic core.




U.S. Pat. No. 5,015,983 entitled “Compact Circuit Interrupter Having Multiple Ampere Ratings” describes a compact current transformer arrangement using a metal core formed from laminations of silicon sheet steel positioned over a pair of secondary windings. The air gaps inherent with such laminated steel plates increase the core losses that are subsequently compensated for by increasing the core size and the amount of core material.




U.S. patent application Ser. No. 08/663,760 entitled “Compact Circuit Interrupter Having Multiple Ampere Ratings” describes a compact current transformer used within circuit breakers having electronic trip units. The continuous arrangement of a sheet of core material about the primary winding provides a transformer core without air gaps. When current transformers are formed about a pair of secondary winding coils the two coils are separately wound on individual bobbins and are later electrically connected together such that the directions of the wires in each of the coils is in opposite directions. One early example of a pair of miniature coil bobbins used within telephone receivers is found within U.S. Pat. No. 4,103.268 entitled “Dual Coil Hinged Bobbin Assembly”.




It would be advantageous to arrange the separate bobbins in such a manner that the coils could then be wound from a continuous source of wire without requiring separate connection operations and orientation as is now required.




One purpose of the invention is to provide a unique bobbin arrangement that allows the two coils to be wound from a single source of wire to eliminate the inter-coil connection process.




SUMMARY OF THE INVENTION




A compact electronic trip circuit breaker of the type employing a signal processor circuit in combination with current sensing utilizes a fixed transformer core size and a fixed secondary winding on the core to meet the size constraints of the compact circuit breaker enclosure. The secondary winding is in the form of a pair of secondary arranged on a pair of bobbins on opposite sides of the transformer core. A modular twin bobbin arrangement allows a pair of secondary to be wound from a continuous source of transformer wire. A flexible connection between the bobbins allows the secondary to be positionally arranged on the transformer without separate soldering or welding operations.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a top perspective view of a circuit breaker employing the modular bobbin current transformer according to the invention;





FIG. 2

is a front perspective view of the modular bobbin current transformer of

FIG. 1

;





FIG. 3

is front plan view of the modular bobbin of

FIG. 2

arranged on a coil winding machine; and





FIGS. 4-6

are front views of the secondary arranged on the modular bobbin of

FIG. 3

prior to arrangement of the transformer core.











DESCRIPTION OF THE PREFERRED EMBODIMENT




A circuit breaker


10


having an electronic trip unit such as described in U.S. Pat. No. 4,672,501 entitled “Circuit Breaker and Protective Relay Unit” is depicted in

FIG. 1

wherein the circuit breaker case


11


containing the circuit breaker components is sealed by means of a circuit breaker cover


12


and an accessory cover


13


. The circuit breaker is manually switched ON and OFF by means of a handle operator


14


which projects through the handle slot


15


allows ON of OFF control of the circuit breaker contacts


9


while the electronic trip unit


19


automatically provides for contact separation upon occurrence of an overcurrent condition. An externally-accessible rating plug


16


within the accessory cover sets the circuit breaker ampere rating to the trip unit


19


. The circuit current is sampled by means of the current transformers


17


arranged around load straps


24


extending within the circuit breaker case that connect with the electronic trip unit


19


by means of terminals


18


.




The current transformer


17


is shown in

FIG. 2

to consist of a pair of top and bottom secondary windings


20


A,


20


B arranged over the load strap


24


and joined by means of a core


22


. The current transformer is similar to that described within aforementioned U.S. patent application Ser. No. 08/663,760. A similar pair of terminals


18


extend from a similar plastic block


27


and are electrically connected with the secondary windings


20


A,


20


B. The wire conductors


21


are wound perpendicular to the major dimension of the continuous or “wrapped” core


22


consisting of a continuous layer of a magnetic flat strip of metal is depicted at


23


. Electrical connection with the electrical components within the circuit breaker are made by means of the load terminal plate


25


at the end of the load strap


24


and which includes a threaded aperture


26


for ease of connection. The current transformer differs from the aforementioned current transformer by the provision of the modular bobbin


40


consisting of the top bobbin


40


A and bottom bow


40


B upon which the wire conductors


21


are arranged to form the corresponding top and bottom secondary windings


20


A,


20


B. The top and bottom bobbins are connected by means of flexible tab


33


and are supported by means of the steps


34


,


35


that overlap for added strength.




In accordance with the teachings of the invention, the modular bobbin


40


as shown in

FIGS. 2

,


3


and


4


is arranged on the mandrel


30


of a coil winding machine


31


by extending the mandrel through the elongated circular apertures


32


A,


32


B extending through the top and bottom bobbins


40


A,


40


B. The top bobbin includes opposing top and bottom flanges


28


A,


29


A and the bottom bobbin includes opposing top and bottom flanges


28


B,


29


B along with the bottom step


35


, as indicated. The plastic block


27


containing the terminals


18


is attached to one side of top flange


28


A and the step


34


extends from the opposite side therefrom. The flexible tab


33


extends between the bottom flange


29


A on the top bobbin


40


A and the top flange


28


B on the bottom flange


40


B. The first wire turns


21


A are formed by rotating the mandrel


30


in a first direction until the top secondary winding


20


A is completed. The direction of the mandrel is then reversed to wind the second wire turns


21


B in the opposite direction. This reverse arrangement of the top and bottom secondary windings allows the placement of the secondary windings in the proper magnetic sense with respect to the magnetic flat strip of metal


23


which constitutes the transformer core


22


.




Referring now to

FIGS. 4

,


5


and


6


, after the top and bottom secondary winding


20


A,


20


B are formed by the provision of the wire turns


21


A,


21


B, the completed top and bottom secondary windings


20


A,


20


B are folded and positioned to complete the current transformer


17


shown earlier in FIG.


2


. The top winding


20


A, with the first wire turns


21


A interconnected with the bottom secondary winding


20


B as indicated at


21


C. is rotated in the indicated counterclockwise direction about the flexible tab


33


to bring the steps


34


and


35


into contact as shown in FIG.


5


. The top and bottom secondary windings


20


A,


20


B are next rotated in the indicated clockwise direction to position the top secondary winding


20


A over the bottom secondary winding


20


B such that the wire terminals


18


extend upwards from the top flange


28


A on the top secondary winding


20


A. The top flange


28


A on the top secondary winding


20


A is positioned over the top flange


28


B on the bottom secondary winding


20


B. The bottom flange


29


A on the top secondary winding


20


A is positioned over the bottom flange


29


B on the bottom secondary winding


20


B. This arrangement now positions the top and bottom apertures


32


A,


32


B to receive the magnetic flat strip of metal


23


to complete the current transformer


17


as shown in FIG.


2


.



Claims
  • 1. A method of forming a current transformer, said method comprising:providing a first bobbin including a first axial aperture disposed therein, providing a second bobbin including a second axial aperture disposed therein; aligning said first axial aperture with said second axial aperture; wrapping a continuous wire on said first bobbin in a first direction to form a first secondary winding; wrapping said continuous wire on said second bobbin in a second direction opposite said first direction to form a second secondary winding; inverting said first bobbin; and disposing a transformer core through said first and second axial apertures.
  • 2. The method of claim 1 further comprising joining a first end of said first bobbin to a second end of said second bobbin.
  • 3. The method of claim 2 wherein said joining further includes joining by a flexible tab and wherein said inverting includes pivoting said first bobbin around said flexible tab.
  • 4. A method of forming a current transformer, said method comprising:providing a first bobbin including a first axial aperture disposed therein; providing a second bobbin including a second axial aperture disposed therein; aligning said first axial aperture with said second axial aperture; rotating said first and second bobbins in a first direction; wrapping a continuous wire on said first bobbin in a second direction to form a first secondary winding; rotating said first and second bobbins in a second direction opposite said first direction; wrapping said continuous wire on said second bobbin in said first direction to form a second secondary winding; inverting said first bobbin; and inserting a portion of a transformer core through said first axial aperture and inserting another portion of said transformer core through said second axial aperture.
  • 5. The method of claim 1, wherein said wrapping said continuous wire on said first bobbin includes rotating said first and second bobbins in said second direction.
  • 6. The method of claim 1, wherein said wrapping said continuous wire on said second bobbin includes rotating said first and second bobbins in said first direction.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 08/704,071 filed Aug. 28, 1996 which is U.S. Pat. No. 5,892,420 filed Apr. 6, 1999.

US Referenced Citations (18)
Number Name Date Kind
2771587 Henderson Nov 1956
3436574 Larrson Apr 1969
3990030 Chamberlin Nov 1976
4103268 Anders et al. Jul 1978
4281359 Bayer et al. Jul 1981
4408639 Hayama et al. Oct 1983
4591942 Willard et al. May 1986
4672501 Bilac et al. Jun 1987
4683518 Gwozdz Jul 1987
4746075 Hoxit May 1988
4754247 Raymont et al. Jun 1988
4853667 Freimuth et al. Aug 1989
5015983 DeRosier et al. May 1991
5422619 Yamaguchi et al. Jun 1995
5424899 Scott et al. Jun 1995
5515597 Herbst et al. May 1996
5705961 Yee Jan 1998
5719547 Kaneko et al. Feb 1998