Method of assembling a prosthetic heart valve

Information

  • Patent Grant
  • 12295833
  • Patent Number
    12,295,833
  • Date Filed
    Thursday, October 7, 2021
    3 years ago
  • Date Issued
    Tuesday, May 13, 2025
    2 months ago
Abstract
A method of assembling a prosthetic heart valve comprises securing a suture loop having at least first and second windings to an outflow edge portion of an inner skirt. The first and second windings are arranged in a repeating pattern of figure-eight shape curves and each winding has a plurality of first sections attached to the outflow edge portion of the inner skirt and a plurality of second sections unattached to the inner skirt. The inner skirt is placed inside of an annular frame and the second sections of the first and second windings are placed over apices of an outflow end of the frame such that the second sections of the first and second windings reside outside of the frame. The second sections of the windings are inserted inwardly through openings in the frame and attached to selected locations on the inner skirt.
Description
FIELD

The present disclosure concerns embodiments of a prosthetic valve for implantation into body ducts, such as native heart valve annuluses, and methods assembling a prosthetic heart valve.


BACKGROUND

The human heart can suffer from various valvular diseases. These valvular diseases can result in significant malfunctioning of the heart and ultimately require replacement of the native valve with an artificial valve. There are a number of known artificial valves and a number of known methods of implanting these artificial valves in humans.


Various surgical techniques may be used to replace or repair a diseased or damaged valve. Due to stenosis and other heart valve diseases, thousands of patients undergo surgery each year wherein the defective native heart valve is replaced by a prosthetic valve. Another less drastic method for treating defective valves is through repair or reconstruction, which is typically used on minimally calcified valves. The problem with surgical therapy is the significant risk it imposes on these chronically ill patients with high morbidity and mortality rates associated with surgical repair.


When the native valve is replaced, surgical implantation of the prosthetic valve typically requires an open-chest surgery during which the heart is stopped and patient placed on cardiopulmonary bypass (a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. It is well known that the risk to the patient increases with the amount of time required on extracorporeal circulation. Due to these risks, a substantial number of patients with defective native valves are deemed inoperable because their condition is too frail to withstand the procedure. By some estimates, more than 50% of the subjects suffering from valve stenosis who are older than 80 years cannot be operated on for valve replacement.


Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For instance, U.S. Pat. Nos. 5,411,522 and 6,730,118, which are incorporated herein by reference, describe collapsible transcatheter heart valves that can be percutaneously introduced in a compressed state on a catheter and expanded in the desired position by balloon inflation or by utilization of a self-expanding frame or stent.


Known prosthetic valves include a frame with a valvular structure (e.g., leaflets) mounted therein, an inner skirt secured to the inside of the frame, and optionally, an outer skirt secured to the exterior of the frame. The inner skirt can serve several functions. For example, the inner skirt can function as a seal member to prevent (or decrease) perivalvular leakage, to anchor the leaflets to the frame, and to protect the leaflets against damage caused by contact with the frame during crimping and during working cycles of the valve. The outer skirt can cooperate with the inner skirt to further reduce or avoid perivalvular leakage after implantation of the valve. The inner skirt desirably is made of a tough, tear resistant material such as polyethylene terephthalate (PET), although various other synthetic or natural materials can be used.


The inner and outer skirts are frequently secured to the frame by suturing or stitching the fabric of the respective skirts to the frame. The leaflets of the prosthetic valve, or at least the cusp edge portions of the leaflets, typically are stitched to the inner skirt of the frame. As can be appreciated, the process of assembling the soft components of a prosthetic valve (e.g., the leaflets and the skirts) to the frame is time-consuming and laborious. Further, the stitching that secures the leaflets to the inner skirt creates stress points on the leaflets, especially during diastole. Accordingly, improvements to skirts for prosthetic valves and methods for their assembly are desirable.


SUMMARY

In a representative embodiment, a method of assembling a prosthetic heart valve comprises securing a suture loop having at least first and second windings to an outflow edge portion of an inner skirt, wherein the first and second windings are arranged in a repeating pattern of figure-eight shape curves and each winding has a plurality of first sections attached to the outflow edge portion of the inner skirt and a plurality of second sections unattached to the inner skirt; placing the inner skirt inside of an annular frame and placing the second sections of the first and second windings over apices of an outflow end of the frame such that the second sections of the first and second windings reside outside of the frame; inserting the second sections of the windings inwardly through openings in the frame; and attaching the second sections of the windings to selected locations on the inner skirt.


In some embodiments, the outflow edge portion of the inner skirt is connected to the frame only by the suture loop.


In some embodiments, the act of securing the suture loop to the outflow edge portion of the inner skirt comprises forming stitches with the first sections of each winding that extend through the outflow edge portion of the inner skirt.


In some embodiments, the act of forming stitches with the first sections of each winding comprises forming in-and-out stitches along adjacent sections of the outflow edge portion of the inner skirt.


In some embodiments, the act of securing the suture loop to the outflow edge portion of the inner skirt comprises attaching the first sections of each winding to the outflow edge portion of the inner skirt with separate sutures.


In some embodiments, the first sections of the first winding alternate with the first sections of the second winding along a length of the suture loop.


In some embodiments, the second sections of the first winding alternate with the second sections of the second winding along a length of the suture loop.


In some embodiments, the method further comprises attaching leaflets to the inner skirt.


In some embodiments, the act of attaching the second sections of the windings to selected locations on the inner skirt comprises securing the second sections of the windings to the selected locations on the inner skirt with sutures.


In another representative embodiment, a method of assembling a prosthetic heart valve comprises providing a skirt having an inflow edge portion and an outflow edge portion; securing a plurality of first sections of a suture loop to one of the inflow edge portion and the outflow edge portion of the skirt; and after securing the suture loop to the skirt, placing the skirt on an annular frame, inserting a plurality of second sections of the suture loop through openings of the frame, and securing the second sections of the suture loop to the skirt.


In some embodiments, the skirt comprises an inner skirt and placing the skirt on the annular frame comprises placing the inner skirt inside of the frame.


In some embodiments, the act of securing the plurality of first sections of the suture loop comprises securing the plurality of first sections to the outflow edge portion of the inner skirt.


In some embodiments, the skirt comprises an outer skirt and placing the skirt on an annular frame comprises placing the outer skirt outside of the frame.


In some embodiments, the suture loop is formed from a single length of suture material.


In some embodiments, the suture loop is formed from only two lengths of suture material.


In some embodiments, the suture loop comprises first and second windings arranged in a repeating pattern of figure-eight shape curves, the plurality of first sections comprises a plurality of first sections of the first winding alternating with a plurality of first sections of the second winding, and the plurality of second sections comprises a plurality of second sections of the first winding alternating with a plurality of second sections of the second winding.


In some embodiments, the method further comprises attaching leaflets to the skirt.


In some embodiments, the act of securing the second sections of the suture loop to the skirt comprises securing the second sections of the suture loop to the skirt with separate sutures.


In another representative embodiment, a prosthetic heart valve comprises an annular frame that is radially expandable from a radially compressed configuration to a radially expanded configuration; an annular skirt having an inflow edge portion and an opposing outflow edge portion; and a suture loop comprising a plurality of first sections secured to one of the inflow edge portion and the outflow edge portion of the skirt and a plurality of second sections extending through openings in the frame and secured to the skirt so as to couple the skirt to the frame.


In some embodiments, the skirt comprises an inner skirt positioned inside of the frame.


In some embodiments, the plurality of first sections of the suture loop are secured to the outflow edge portion of the inner skirt.


In some embodiments, the plurality of first sections of the suture loop are secured to the inflow edge portion of the inner skirt.


In some embodiments, the skirt comprises an outer skirt positioned outside of the frame.


In some embodiments, the plurality of first sections of the suture loop are secured to the outflow edge portion of the outer skirt.


In some embodiments, the plurality of first sections of the suture loop are secured to the inflow edge portion of the outer skirt.


In some embodiments, the prosthetic valve further comprises a plurality of leaflets supported by the skirt.


In some embodiments, the leaflets have cusp edges that are sutured to the skirt.


In some embodiments, the suture loop comprises first and second windings arranged in a repeating pattern of figure-eight shape curves, the plurality of first sections comprises a plurality of first sections of the first winding alternating with a plurality of first sections of the second winding, and the plurality of second sections comprises a plurality of second sections of the first winding alternating with a plurality of second sections of the second winding.


In another representative embodiment, a prosthetic heart valve comprises an annular frame that is radially expandable from a radially compressed configuration to a radially expanded configuration, wherein the frame comprises a plurality of circumferentially extending rows of angled struts connected end-to-end at junctions; an annular skirt having an inflow edge portion and an opposing outflow edge portion; and a suture loop extending along an entire length the outflow edge portion of the skirt and coupling the outflow edge portion of the skirt to one of the rows of struts of the frame without stitching extending around any struts between the junctions of the one row.


In some embodiments, the suture loop comprises a plurality of first sections secured to the outflow edge portion of the skirt and a plurality of second sections extending through openings in the frame and secured to the skirt so as to couple the skirt to the frame.


In some embodiments, the suture loop comprises first and second windings arranged in a repeating pattern of figure-eight shape curves, the plurality of first sections comprises a plurality of first sections of the first winding alternating with a plurality of first sections of the second winding, and the plurality of second sections comprises a plurality of second sections of the first winding alternating with a plurality of second sections of the second winding.


In some embodiments, the first and second windings are formed from a single, continuous piece of suture material.


In some embodiments, the first and second windings are formed from separate pieces of suture material.


In some embodiments, the skirt comprises an inner skirt positioned inside of the frame.


In some embodiments, the skirt comprises an outer skirt positioned outside of the frame.


In some embodiments, the prosthetic heart valve further comprises a plurality of leaflets supported by the skirt.


In some embodiments, the leaflets have cusp edges that are sutured to the skirt.


In some embodiments, the outflow edge portion of the skirt is connected to the frame only by the suture loop.


In another representative embodiment, a prosthetic heart valve comprises an annular frame that is radially expandable from a radially compressed configuration to a radially expanded configuration; an annular inner skirt having an inflow edge portion and an opposing outflow edge portion; a suture loop comprising a plurality of first sections secured to the outflow edge portion of the inner skirt and a plurality of second sections extending through openings in the frame and secured to the inner skirt so as to couple the inner skirt to the frame; and a plurality of leaflets positioned inside of the frame, wherein each leaflet has an inflow end portion that is sutured to the inner skirt.


In some embodiments, the outflow edge portion of the inner skirt is connected to the frame only by the suture loop.


In some embodiments, the first sections of the suture loop form stitches that are stitched to the outflow edge portion of the inner skirt.


In some embodiments, the first sections of the suture loop form in-and-out stitches along adjacent sections of the outflow edge portion of the inner skirt.


In some embodiments, the first sections of the suture loop are secured to the outflow edge portion of the inner skirt with separate sutures.


In some embodiments, the suture loop comprises first and second windings arranged in a repeating pattern of figure-eight shape curves, the plurality of first sections comprises a plurality of first sections of the first winding alternating with a plurality of first sections of the second winding, and the plurality of second sections comprises a plurality of second sections of the first winding alternating with a plurality of second sections of the second winding.


In some embodiments, the leaflets form commissures that are connected to frame.


In some embodiments, the second sections of the suture loop are secured to selected locations on the inner skirt with sutures.


In some embodiments, the frame comprises first and second circumferentially extending rows of angled struts connected end-to-end at junctions and wherein the openings through which the second sections of the suture loop extend are defined by the first and second rows of struts.


In another representative embodiment, a prosthetic heart valve comprises an annular frame that is radially expandable from a radially compressed configuration to a radially expanded configuration; an annular inner skirt having an inflow edge portion and an opposing outflow edge portion; and a suture loop having at least first and second windings secured to an outflow edge portion of an inner skirt, wherein the first and second windings are arranged in a repeating pattern of figure-eight shape curves and each winding has a plurality of first sections attached to the outflow edge portion of the inner skirt and a plurality of second sections extending through openings in the frame and secured to the inner skirt so as to couple the inner skirt to the frame.


In some embodiments, the prosthetic heart valve further comprises a plurality of leaflets positioned inside of the frame, wherein each leaflet has an inflow end portion that is sutured to the inner skirt.


In some embodiments, the leaflets form commissures that are connected to frame.


In some embodiments, the outflow edge portion of the inner skirt is connected to the frame only by the suture loop.


In some embodiments, the first sections of the windings form stitches that are stitched to the outflow edge portion of the inner skirt.


In some embodiments, the first sections of the windings form in-and-out stitches along adjacent sections of the outflow edge portion of the inner skirt.


In some embodiments, the first sections of the windings are secured to the outflow edge portion of the inner skirt with separate sutures.


In some embodiments, the second sections of the windings are secured to selected locations on the inner skirt with sutures.


In some embodiments, the outflow edge portion of the inner skirt has a saw-tooth shape pattern having a plurality of angled sections defining a series of peaks and valleys.


In some embodiments, each first section of the first winding is attached to two adjacent angled sections defining a respective valley and each first section of the second winding is attached to two adjacent angled sections defining a respective valley between angled sections that are attached to respective first sections of the first winding.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a prosthetic heart valve, according to one embodiment.



FIG. 2 is a perspective view of the prosthetic heart valve of FIG. 1.



FIG. 3 is a perspective view of the frame of the prosthetic heart valve of FIG. 1.



FIG. 4 shows the frame of FIG. 3 in a flattened configuration.



FIGS. 5-8 shows a method of mounting an inner skirt on a frame of a prosthetic heart valve, according to one embodiment.



FIGS. 9A and 9B are enlarged views of a cell of the frame in the radially expanded configuration and the radially compressed configuration, respectively.



FIG. 10 shows an alternative method of mounting a suture loop to an inner skirt for mounting the inner skirt on a frame.





DETAILED DESCRIPTION


FIGS. 1-2 show two different views of a prosthetic valve 10, according to one embodiment. The illustrated valve is adapted to be implanted in the native aortic annulus, although in other embodiments it can be adapted to be implanted in the other native annuluses of the heart. The valve 10 can have several main components: a stent, or frame, 12, a valvular structure 14, and a skirt assembly 15. The skirt assembly 15 can include an inner skirt 16, and optionally, an outer skirt 18.


The valvular structure 14 (or leaflet structure) can include three leaflets 40 (although a greater or fewer number of leaflets can be used), collectively forming the leaflet structure, which can be arranged to collapse in a tricuspid arrangement. The valvular structure 14 is configured to permit blood to flow through the prosthetic valve 10 in a direction from an inlet end 48 of the prosthetic valve to an outlet end 50 of the prosthetic valve and to block the flow of blood through the prosthetic valve in a direction from the outlet end 50 to the inlet end 48.


Each leaflet 40 desirably has a curved, generally U-shaped inlet or cusp edge 52. In this manner, the inlet edge of the valvular structure 14 has an undulating, curved scalloped shape. By forming the leaflets with this scalloped geometry, stresses on the leaflets can be reduced, which in turn improves durability of the valve. Moreover, by virtue of the scalloped shape, folds and ripples at the belly of each leaflet (the central region of each leaflet), which can cause early calcification in those areas, can be eliminated or at least minimized. The scalloped geometry also reduces the amount of tissue material used to form leaflet structure, thereby allowing a smaller, more even crimped profile at the inflow end of the valve. The leaflets 40 can be formed of pericardial tissue (e.g., bovine pericardial tissue), biocompatible synthetic materials, or various other suitable natural or synthetic materials as known in the art and described in U.S. Pat. No. 6,730,118, which is incorporated by reference herein. Further, the leaflets are configured to permit blood flow from the inflow end to the outflow end, and block blood flow from the outflow end to the inflow end.


The bare frame 12 is shown in FIG. 3. In the depicted embodiment, the frame 12 has an annular shape defining an inlet end 54 and an outlet end 56 and includes a plurality of struts (or frame members). The frame 12 can be formed with a plurality of circumferentially spaced slots, or commissure windows, 20 (three in the illustrated embodiment) that are adapted to mount the commissures 58 of the valvular structure 14 to the frame, as described more fully in U.S. Patent Publication No. 2012/0123529, which is incorporated herein by reference.


The frame 12 can be made of any of various suitable plastically-expandable materials (e.g., stainless steel, etc.) or self-expanding materials (e.g., Nitinol) as known in the art. When constructed of a plastically-expandable material, the frame 12 (and thus the valve 10) can be crimped to a radially compressed state on a delivery catheter and then expanded inside a patient by an inflatable balloon or another suitable expansion mechanism. When constructed of a self-expandable material, the frame 12 (and thus the valve 10) can be crimped to a radially compressed state and restrained in the compressed state by insertion into a sheath or equivalent mechanism of a delivery catheter. Once inside the body, the valve can be advanced from the delivery sheath, which allows the valve to expand to its functional size.


Suitable plastically-expandable materials that can be used to form the frame 12 include, without limitation, stainless steel, a nickel based alloy (e.g., a cobalt-chromium or a nickel-cobalt-chromium alloy), polymers, or combinations thereof. In particular embodiments, frame 12 is made of a nickel-cobalt-chromium-molybdenum alloy, such as MP35N™ (tradename of SPS Technologies), which is equivalent to UNS R30035 (covered by ASTM F562-02). MP35N™/UNS R30035 comprises 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight. It has been found that the use of MP35N to form frame 12 provides superior structural results over stainless steel. In particular, when MP35N is used as the frame material, less material is needed to achieve the same or better performance in radial and crush force resistance, fatigue resistances, and corrosion resistance. Moreover, since less material is required, the crimped profile of the frame can be reduced, thereby providing a lower profile valve assembly for percutaneous delivery to the treatment location in the body.


Referring to FIGS. 3 and 4, the frame 12 in the illustrated embodiment includes a first, lower row I of angled struts 22 arranged end-to-end and extending circumferentially at the inflow end of the frame; a second row II of circumferentially extending, angled struts 24; a third row III of circumferentially extending, angled struts 26; a fourth row IV of circumferentially extending, angled struts 28; and a fifth row V of circumferentially extending, angled struts 32 at the outflow end 56 of the frame. A plurality of substantially straight axially extending struts 34 can be used to interconnect the struts 22 of the first row I with the struts 24 of the second row II. The fifth row V of angled struts 32 are connected to the fourth row IV of angled struts 28 by a plurality of axially extending window frame portions 30 (which define the commissure windows 20) and a plurality of axially extending struts 31. Each axial strut 31 and each frame portion 30 extends from a location defined by the convergence of the lower ends of two angled struts 32 to another location defined by the convergence of the upper ends of two angled struts 28.


Each commissure window frame portion 30 mounts a respective commissure 58 of the leaflet structure 14. As can be seen, each frame portion 30 is secured at its upper and lower ends to the adjacent rows of struts to provide a robust configuration that enhances fatigue resistance under cyclic loading of the valve compared to known cantilevered struts for supporting the commissures of the leaflet structure. This configuration enables a reduction in the frame wall thickness to achieve a smaller crimped diameter of the valve. In particular embodiments, the thickness T of the frame 12 (FIG. 3) measured between the inner diameter and outer diameter is about 0.48 mm or less.


The struts and frame portions of the frame collectively define a plurality of open cells of the frame. At the inflow end of the frame 12, struts 22, struts 24, and struts 34 define a lower row of cells defining openings 36. The second, third, and fourth rows of struts 24, 26, and 28 define two intermediate rows of cells defining openings 38. The fourth and fifth rows of struts 28 and 32, along with frame portions 30 and struts 31, define an upper row of cells defining openings 60. The openings 60 are relatively large and are sized to allow portions of the leaflet structure 14 to protrude, or bulge, into and/or through the openings 60 when the frame 12 is crimped in order to minimize the crimping profile.


As shown in FIG. 4, the lower end of the strut 31 is connected to two struts 28 at a node or junction 44, and the upper end of the strut 31 is connected to two struts 32 at a node or junction 46. The strut 31 can have a thickness that is less than the thicknesses of the junctions 44, 46. The junctions 44, 46, along with junctions 64, each of which links two adjacent struts 32, prevent full closure of openings 60 when the frame 12 is in a crimped state. Thus, the geometry of the struts 31, and junctions 44, 46 and 64 assists in creating enough space in openings 60 in the crimped state to allow portions of the leaflets to protrude (i.e., bulge) outwardly through openings. This allows the valve to be crimped to a relatively smaller diameter than if all of the leaflet material is constrained within the crimped frame.


The frame 12 is configured to prevent or at least minimize possible over-expansion of the valve at a predetermined balloon pressure, especially at the outflow end portion of the frame, which supports the leaflet structure 14. In one aspect, the frame is configured to have relatively larger angles 42a, 42b, 42c, 42d, 42e between struts. The larger the angle, the greater the force required to open (expand) the frame. As such, the angles between the struts of the frame can be selected to limit radial expansion of the frame at a given opening pressure (e.g., inflation pressure of the balloon). In particular embodiments, these angles are at least 110 degrees or greater when the frame is expanded to its functional size, and even more particularly these angles are at least 120 degrees or greater when the frame is expanded to its functional size. U.S. Patent Publication No. 2012/0123529 further describes the frame 12 as well as other configurations for frames that can be incorporated in a prosthetic heart valve.


As shown in FIGS. 1-2, the skirt assembly 15 can include an inner skirt 16 that is located inside the frame 12 and an outer skirt 18 that is located outside the frame 12. The inflow (lower) and the outflow (upper) edges of the inner skirt 16 can be secured to the frame 12 and/or the outer skirt 16 by, for example, heat bonding, adhesive, and/or suturing. Typically, the inflow edge is sutured to a respective row of strut, such as the first row I of struts and the outflow edge is sutured to a respective row of struts, such as the third III or fourth IV row of struts. The outer skirt 18 can include a plurality of circumferentially spaced apart extension portions or projections 66 and recesses 68 between adjacent projections formed along the outflow edge (the upper edge in the illustrated embodiment) of the outer skirt. In other embodiments, the outer skirt 18 can have a straight outflow edge without any projections or recesses.


The inflow (lower) and the outflow (upper) edges of the outer skirt 18 can be secured to the frame 12 and/or the inner skirt 16 by, for example, heat bonding, adhesive, and/or suturing. As shown in the illustrated embodiment, the projections 66 along the outflow edge of the outer skirt 18 can be secured to struts of the frame with sutures 70 while the recesses 68 between adjacent projections can be left unattached to the frame 12 and the inner skirt 16. The outer skirt 18 functions as a sealing member for the prosthetic valve 10 by sealing against the tissue of the native valve annulus, helping to reduce paravalvular leakage past the prosthetic valve 10.


In some embodiments, as shown in FIGS. 1-2, the outer skirt 18 can be configured to extend radially outward from the frame 12 when the prosthetic valve 10 is in a radially expanded configuration. Alternatively, the outer skirt 18 can be configured to form a snug fit with the frame 12 such that it lies against the outer surface of the frame 12 when the prosthetic valve 10 is in the radially expanded configuration, such as disclosed in WIPO Publication No. 2018/222799, which is incorporated herein by reference. The outer skirt 18 can be formed from any of various synthetic materials or natural tissue (e.g., pericardial tissue). Suitable synthetic materials include any of various biocompatible fabrics (e.g., PET fabric) or non-fabric films, including any of the materials disclosed below for the reinforcing layer 88 of the inner skirt 16. Further details of the outer skirt 18 are also disclosed in U.S. Patent Publication No. 2012/0123529 and WIPO Publication No. 2018/222799.


As further shown in FIGS. 1-2, the inner skirt 16 in the illustrated embodiment extends from the inlet end 54 of the frame to the fourth row IV of angled struts 28. In other embodiments, the inner skirt 16 can extend from the inlet end 54 of the frame to a location short of the fourth row IV of struts (e.g., to the second row II or the third row III of struts), or the inner skirt can extend the entire height of the frame 12 (e.g., from the inlet end 54 to the outlet end 56). In alternative embodiments, the inner skirt 16 can be positioned and/or sized to extend over a different portion of the frame 12 than the configuration shown in FIGS. 1-2. For example, in some embodiments, the inflow end of the inner skirt 16 can be axially spaced from the inlet end 54 of the frame 12.


Although the inner skirt 16 is typically tubular or cylindrical in shape (forming a complete circle in a cross-sectional profile in a plane perpendicular to the longitudinal axis of the valve), the inner skirt 16 need not extend along the inner surface of the frame 12 in the circumferential direction through 360 degrees. In other words, the inner skirt 16 can have a cross-sectional profile (in a plane perpendicular to the axis of the lumen of the valve) that is not a complete circle. The inner skirt 16 can be initially formed as a flat strip, and then formed to the annular shape by coupling together opposing edge portions, for example, by sewing, thermal bonding, and/or adhesive. Alternatively, the inner skirt 16 can be formed directly in an annular shape, for example, by constructing the inner layer 16 on a cylindrically shaped mandrel as described below.


As noted above, the leaflets 40 can be secured to one another at their adjacent sides to form commissures 58. Each commissure 58 can be secured to a corresponding commissure window 20 of the frame 12, as described in U.S. Patent Publication No. 2012/0123529. The inflow or cusp edges 52 of the leaflets 40 can be sutured to the inner skirt 16 along a suture line that tracks the curvature of the scalloped inflow edge of the leaflet structure.


In some embodiments, the inflow edges 52 of the leaflets 40 are secured to the inner skirt 16 prior to mounting the inner skirt 16 to the frame. After securing the leaflets 40 to the inner skirt 16, the inner skirt is then secured to the frame as described above and the commissures 58 of the leaflets are mounted to the frame. In other embodiments, the inner skirt 16 can be mounted to the frame without the leaflets, after which the inflow edges 52 of the leaflets are then secured to the inner skirt.


In certain embodiments, the inflow edges 52 of the leaflets 40 can be secured to the inner skirt via a thin PET reinforcing strip (not shown), as disclosed in U.S. Pat. No. 7,993,394, which is incorporated herein by reference. As described in U.S. Pat. No. 7,993,394, the reinforcing strip can be sutured to the inflow edges of the leaflets. The reinforcing strip and the lower edges of the leaflets can then be sutured to the inner skirt 16. The reinforcing strip desirably is secured to the inner surfaces of the leaflets 40 such that the inflow edges 52 of the leaflets become sandwiched between the reinforcing strip and the inner skirt when the leaflets and the reinforcing strip are secured to the inner skirt. The reinforcing strip enables a secure suturing and protects the pericardial tissue of the leaflet structure from tears.



FIGS. 5-8 illustrate an alternative technique for mounting the soft components of a prosthetic valve (e.g., the inner skirt 16, the outer skirt 18, and/or the leaflets 40) to a frame of the prosthetic valve. The depicted embodiment illustrates a method of mounting the inner skirt 16 and the leaflets 40 to a frame 120. The frame 120 has an inflow end 122 and an outflow end 124. The frame in the illustrated embodiment comprises a plurality of circumferentially extending rows of struts, including a first row I of angled struts 126, a second row II of angled struts 128, a third row III of angled struts 130, a fourth row IV of angled struts 132. The struts 132 form a plurality of apices 134 at the outflow end 124 of the frame. In other embodiments, the frame 120 can have a greater or fewer number of rows of struts.


An exemplary method of assembling the skirt 16 onto the frame 120 includes securing a main suture loop 136 to an outflow edge portion 138 of the inner skirt 16. The outflow edge portion 138 of the inner skirt 16 can have an undulating or saw-tooth shaped pattern defining a series of peaks and valleys that correspond to the shape of the third row III of struts 130. As best shown in FIG. 6, the suture loop 136 in the illustrated embodiment is configured as a repeating pattern of figure-eight shaped curves arrayed end-to-end so as to form a series or two or more sub-loops 140a, 140b, 140c, 140d, 140e along the length of the main loop 136. The number of sub-loops 140a-e desirably equals the number of apices 134 at the outflow end 124 of the frame 120. In one example, the frame 120 has 12 apices 134 (similar to frame 12) and 12 sub-loops 140a-e. However, the number of sub-loops can vary depending on the particular application.


The suture loop 136 in the illustrated embodiment has at least first and second windings 142a, 142b, respectively, that form respective sinusoidal curves. The curves are offset or displaced from each other by one-half of a “wavelength” (a full wavelength being the length of a winding 142a, 142b from a first location 162a where the windings intersect to a second location 162b where the windings intersect). In this manner, the first winding 142a has a plurality of half-wavelength sections 164a that curve in one direction alternating with a plurality of half-wavelength sections 164b that curve in the opposite direction. Similarly, the second winding 142b has a plurality of half-wavelength sections 166a that curve in one direction alternating with a plurality of half-wavelength sections 166b that curved in the opposite direction. Each section 164a is paired with a corresponding section 166b and each section 164b is paired with a corresponding section 166a to form the sub-loops 140a-e.


The suture loop 136 can be formed from any of various types and sizes of sutures, including any of various single filament or multi-filament sutures. In particular embodiments, for example, the suture loop 136 is made of a 2-0 or 3-0 size suture, such as a Dyneema or Ethibond suture. In some embodiments, the suture loop 136 can be made of braided or twisted multi-filament suture material.


In one embodiment, the main suture loop 136 is formed into the repeating figure-eight pattern shown in FIGS. 5-6 as it is secured to the outflow edge portion 138 of the skirt 16. This can be accomplished by taking a single length of suture and securing the first winding 142a of the suture in intervals along the outflow edge portion 138. In particular, the first winding 142a is secured to every pair of adjacent sections 144 of the outflow edge portion 138, such as by forming in-and-out stitches along the sections 144, while skipping each pair of adjacent sections 146 located between sections 144 such that winding sections 164b are attached to the skirt sections 144 and sections 164a are not attached to the skirt.


After the first winding 142a is secured along the entire length of the outflow edge portion 138 (skipping pairs of adjacent sections 146), the second winding 142b of the suture is secured to every pair of adjacent skirt sections 146, such as by forming in-and-out stitches along the sections 146, while skipping each pair of adjacent sections 144 located between sections 146 such that winding sections 166b are attached to the skirt sections 146 and winding sections 166a are not attached to the skirt. In this manner, the first and second windings 142a, 142b form the repeating figure-eight pattern defining the plurality of sub-loops 140a-e as shown in FIG. 6. Thereafter, the ends of the suture can be tied off or otherwise secured to each other to form a continuous loop. In other embodiments, the ends of the suture need not be connected to each other to form a continuous loop and instead can be tied or otherwise secured to struts of the frame when the inner skirt 16 is later placed on the frame. The skirt 16 desirably is in a flattened (non-cylindrical) configuration when the main suture loop 136 is secured to the skirt to facilitate the stitching process.


In an alternative embodiment, the main suture loop 136 can be formed using two separate pieces or lengths of suture. A first length of suture can be secured to skirt sections 144 as described above to form the first winding 142a and a separate, second length of suture can be secured to sections 146 as described above to form the second winding 142b. The adjacent ends of the first and second lengths of suture can be tied off or otherwise secured to each other to form a continuous loop. In other embodiments, the adjacent ends of the windings 142a, 142b need not be connected to each other to form a continuous loop and instead can be tied or otherwise secured to struts of the frame when the inner skirt 16 is later placed on the frame.


When forming the main suture loop 136, each section 164a, 164b of the first winding 142a and each section 166a, 166b of the second winding 142b desirably has an overall length equal to or approximately equal to twice the length L of a strut 130. This allows the unattached sections 164a, 166a of the windings 142a, 142b to be later secured to the skirt at locations adjacent the junctions of the third row III of struts 130, as further described in greater detail below.


Referring now to FIG. 7, after securing the main suture loop 136 to the skirt 16, the skirt can be placed inside of the frame 120 with the unattached sections 164a, 166a of the windings 142a, 142b placed over the apices 134 at the outflow end of the frame. When the outflow edge portion 138 is aligned with the struts 130 of the third row III, the unattached sections 164a, 166a of the windings 142a, 142b extend behind struts 132 of the fourth row IV on the outside of the frame 120. The unattached sections 164a, 166a of the windings 142a, 142b can then be inserted inwardly into the interior of the frame through the cell openings 150 defined between the third and fourth rows of struts, as indicated by arrows 152 (e.g., by pushing or pulling the sections 164a, 166a through the cell openings 150).


The unattached sections 164a, 166a of the windings 142a, 142b can now be attached to the inner skirt 16 at selected locations. For example, as shown in FIG. 8, the unattached sections 164a, 166a can be attached to the outflow edge portion 138 at locations adjacent frame junctions 154 between the second and third rows of struts. In particular, each section 164a can be attached to the outflow edge portion 138 adjacent a respective junction 154a and each section 166a can be attached to the outflow edge portion 138 adjacent respective junctions 154b. Sections 164a, 166a of the windings can be attached to the outflow edge portion 138 using separate sutures 156 at each junction 154a, 154b. Each suture 156 can form one or more stitches that extends through the skirt material and around the adjacent winding section 164a, 166a. The inflow edge portion 139 of the skirt 16 can be secured to the skirt using conventional techniques, such as by stitching the skirt to the first row I of struts 126 with sutures 158.


It should be noted that the previously unattached sections 164a, 166a of the windings 142a, 142b pulled into the interior of the frame are depicted in FIG. 8 as being slightly longer than corresponding attached sections 164b, 166b of the windings 142a, 142b for purposes of illustration. However, these sections desirably have equal lengths. Thus, once secured with sutures 158, the sections 164a, 166a can track or correspond to the shape of the outflow edge portion 138 of the skirt and the stitching formed by the sections 164b, 166b.



FIGS. 9A and 9B shows a representative frame cell of the uppermost row of cells of the frame (the cells formed by the third row of struts 130 and the fourth row of struts 132) when the frame 120 is in the radially expanded configuration (FIG. 9A) and radially compressed configuration (FIG. 9B). As shown, the height of the cell in the axial direction decreases when the frame is radially expanded and increases when the frame is radially compressed. As noted above, each section 164a, 164b of the first winding 142a and each section 166a, 166b of the second winding 142b desirably has an overall length equal to or approximately equal to twice the length L of a strut 130. This accommodates foreshortening of the frame cells when the prosthetic valve is radially expanded.


After the inner skirt 16 is mounted to the frame 120, a valvular structure, such as a plurality of leaflets 40, can be mounted to the inner skirt 16 and/or the frame 120. For example, the cusp (inflow) edges of the leaflets 40 can be sutured to the inner skirt 16 and the commissures of the leaflets can be sutured to the inner skirt and/or adjacent cells of the frame. In alternative embodiments, the cusp edges of the leaflets 40 can be secured (e.g., sutured) to the skirt 16 prior to assembling the inner skirt on the frame. The commissures of the leaflets 40 can be secured to cells of the frame after placing the inner skirt and the leaflets inside of the frame. Further details regarding the assembly of the leaflets 40 to the inner skirt and the frame are disclosed in U.S. Patent Publication Nos. 2010/0049313, 2012/0123529, and 2018/0028310, which are incorporated herein by reference.


In particular embodiments, the sutures 156 used to attach the windings 142a, 142b to the skirt do not secure the outflow edge portion 138 of the skirt directly to the frame 120. In other words, in such embodiments, the sutures 156 do not extend around any of the struts of the frame. In particular embodiments, in contrast to known prosthetic valves, no stitching is used to secure the outflow edge portion of the inner skirt to the struts of the frame. Instead, in such embodiments, the outflow edge portion 138 is secured or connected indirectly to the frame only by the main suture loop 136 that extends into and out of the frame at frame junctions 160 between the third and fourth rows of struts and need not include any stitching looping around the struts 130 between junctions 154 and 160. In this manner, the outflow edge portion 138 of the inner skirt 16 is suspended from the frame 120 by the main suture loop 136. During diastole, the leaflets 40 close under pressure from the flow of retrograde blood (in the direction of arrow 170 in FIG. 8). The diastolic load is transferred from the leaflets to the inner skirt to the frame via the main suture loop 136. In this manner, most of the forces acting on the prosthetic valve during diastole are born by the metal struts of the frame and not the leaflets, which are more susceptible of wear and tear. Thus, as can be appreciated, the disclosed methods and configurations can improve long term wearability and performance of the prosthetic valve.


Moreover, in known prosthetic valves, the outflow edge portion of the inner skirt typically is secured to the frame with stitching that secures the outflow edge portion of the inner skirt to an entire row of struts of the frame, which is a time-consuming and laborious process. The disclosed methods greatly facilitate the assembly process because no stitching is needed to secure the outflow edge portion of the inner skirt directly to the struts of the frame.



FIG. 10 shows an alternative way of securing the main suture loop 136 to the inner skirt 16. In this embodiment, the windings 142a, 142b are laid out against one side of the inner skirt as shown in FIG. 10 such that sections 164b and 166b of the first and second windings extend along the outflow edge portion 138. The winding sections 164b, 166b are then secured to the outflow edge portion 138 using suitable techniques or mechanisms. For example, the winding sections can be secured to the inner skirt 16 with stiches 180 placed at selected locations along the outflow edge portion. For example, as shown in FIG. 10, the sutures 180 can be placed near the valleys and peaks of the outflow edge portion 138 of the inner skirt. After securing the main suture loop 136 to the inner skirt 16, the inner skirt 16 can be placed on and secured to the frame as previously described above in connection with FIGS. 5-8. Further, a valvular structure, such as a plurality of leaflets 40, can be mounted to the inner skirt 16 and/or the frame 120 as previously described.


In the embodiments described above, the main suture loop 136 has first and second windings 142a, 142b. In alternative embodiments, a main suture loop 136 can have more than two windings, such as three, four or more windings.


In the methods described above, a main suture loop 136 is used to secure the outflow edge portion 138 of the inner skirt 16 to the frame 120. However, in other embodiments, the same methods can be used to secure the inflow edge portion 139 of the inner skirt 16 to the frame. For example, another main suture loop 136 can be secured to the inflow edge portion 139 of the inner skirt (such as shown in FIG. 5 or FIG. 10 for the outflow edge portion 138) and then secured to the inflow end of the frame (similar to FIGS. 5-8 but placing the sub-loops 140a-e around the apices at the inflow end 122 of the frame). In some embodiments, the inflow edge portion 139 of the skirt 16 can be shaped similar to the outflow edge portion 138 such that it has a series of peaks and valleys that follow the shape of the first row I of struts 126 to facilitate placement of the sub-loops 140a-e around the apices at the inflow end 122 of the frame.


In alternative embodiments, the methods of assembling the inner skirt 16 to the frame 120 disclosed herein also can be used to assemble an outer skirt (e.g., outer skirt 18) to the frame of a prosthetic valve. For example, a main suture loop 136 can be secured to the outflow edge portion of an outer skirt and the outer skirt can be secured to the frame 120 as described above in connection with FIGS. 5-8, except that the outer skirt is placed on the outside of the frame and the sub-loops 140a-e are placed over the apices 134 such that unattached sections of the windings are inside of the frame. The unattached sections of the windings can then be pulled outwardly through the openings 150 of the frame 120 and then attached to the outer skirt, such as with sutures (similar to sutures 156). In further embodiments, the inflow edge portion of an outer skirt can be mounted to a frame with a suture loop 136, or the inflow edge portion and the outflow edge portion of an outer skirt can be mounted to a frame with respective suture loops 136.


General Considerations

It should be understood that the disclosed embodiments can be adapted to deliver and implant prosthetic devices in any of the native annuluses of the heart (e.g., the aortic, pulmonary, mitral, and tricuspid annuluses), and can be used with any of various delivery approaches (e.g., retrograde, antegrade, transseptal, transventricular, transatrial, etc.).


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved. The technologies from any example can be combined with the technologies described in any one or more of the other examples. In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosed technology.


Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.


As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “connected” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.


Directions and other relative references (e.g., inner, outer, upper, lower, etc.) may be used to facilitate discussion of the drawings and principles herein, but are not intended to be limiting. For example, certain terms may be used such as “inside,” “outside,”, “top,” “down,” “interior,” “exterior,” and the like. Such terms are used, where applicable, to provide some clarity of description when dealing with relative relationships, particularly with respect to the illustrated embodiments. Such terms are not, however, intended to imply absolute relationships, positions, and/or orientations. For example, with respect to an object, an “upper” part can become a “lower” part simply by turning the object over. Nevertheless, it is still the same part and the object remains the same. As used herein, “and/or” means “and” or “or”, as well as “and” and “or”.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. I therefore claim as my invention all that comes within the scope and spirit of these claims.

Claims
  • 1. A method of assembling a prosthetic heart valve comprising: securing a suture loop having at least first and second windings to an outflow edge portion of an inner skirt, wherein the first and second windings are arranged in a repeating pattern of figure-eight shape curves and each winding has a plurality of first sections attached to the outflow edge portion of the inner skirt and a plurality of second sections unattached to the inner skirt;after securing the suture loop to the inner skirt, placing the inner skirt inside of an annular frame and placing the second sections of the first and second windings over apices of an outflow end of the frame such that the second sections of the first and second windings reside outside of the frame;inserting the second sections of the windings inwardly through openings in the frame; andattaching the second sections of the windings to selected locations on the inner skirt.
  • 2. The method of claim 1, wherein the outflow edge portion of the inner skirt is connected to the frame only by the suture loop.
  • 3. The method of claim 1, wherein securing the suture loop to the outflow edge portion of the inner skirt comprises forming stitches with the first sections of each winding that extend through the outflow edge portion of the inner skirt.
  • 4. The method of claim 3, wherein forming stitches with the first sections of each winding comprises forming in-and-out stitches along adjacent sections of the outflow edge portion of the inner skirt.
  • 5. The method of claim 1, wherein securing the suture loop to the outflow edge portion of the inner skirt comprises attaching the first sections of each winding to the outflow edge portion of the inner skirt with separate sutures.
  • 6. The method of claim 1, wherein the first sections of the first winding alternate with the first sections of the second winding along a length of the suture loop.
  • 7. The method of claim 1, wherein the second sections of the first winding alternate with the second sections of the second winding along a length of the suture loop.
  • 8. The method of claim 1, further comprising attaching leaflets to the inner skirt.
  • 9. The method of claim 1, wherein attaching the second sections of the windings to selected locations on the inner skirt comprises securing the second sections of the windings to the selected locations on the inner skirt with sutures.
  • 10. A method of assembling a prosthetic heart valve comprising: providing a skirt having an inflow edge portion and an outflow edge portion;securing a plurality of first sections of a suture loop to one of the inflow edge portion and the outflow edge portion of the skirt, wherein a plurality of second sections of the suture loop are unattached to the inner skirt; andafter securing the plurality of first sections of the suture loop to the skirt, placing the skirt on an annular frame, inserting the plurality of second sections of the suture loop through openings of the frame, and securing the second sections of the suture loop to the skirt.
  • 11. The method of claim 10, wherein the skirt comprises an inner skirt and placing the skirt on the annular frame comprises placing the inner skirt inside of the frame.
  • 12. The method of claim 11, wherein the act of securing the plurality of first sections of the suture loop comprises securing the plurality of first sections to the outflow edge portion of the inner skirt.
  • 13. The method of claim 10, wherein the skirt comprises an outer skirt and placing the skirt on an annular frame comprises placing the outer skirt outside of the frame.
  • 14. The method of claim 10, wherein the suture loop is formed from a single length of suture material.
  • 15. The method of claim 10, wherein the suture loop is formed from only two lengths of suture material.
  • 16. The method of claim 10, wherein the suture loop comprises first and second windings arranged in a repeating pattern of figure-eight shape curves, the plurality of first sections comprises a plurality of first sections of the first winding alternating with a plurality of first sections of the second winding, and the plurality of second sections comprises a plurality of second sections of the first winding alternating with a plurality of second sections of the second winding.
  • 17. The method of claim 10, further comprising attaching leaflets to the skirt.
  • 18. The method of claim 10, wherein the act of securing the second sections of the suture loop to the skirt comprises securing the second sections of the suture loop to the skirt with separate sutures.
  • 19. A prosthetic heart valve comprising: an annular frame that is radially expandable from a radially compressed configuration to a radially expanded configuration;an annular skirt having an inflow edge portion and an opposing outflow edge portion; anda suture loop comprising a plurality of first sections secured to one of the inflow edge portion and the outflow edge portion of the skirt and a plurality of second sections extending through openings in the frame and secured to the skirt so as to couple the skirt to the frame,wherein each first section forms a plurality of stitches along the skirt without extending around any portion of the frame and each second section extends from an end of one of the first sections to an end of another one of the first sections without extending through the skirt, wherein each second section is secured to the skirt using a separate suture that forms one or more stitches that extend through the skirt material and around the second section.
  • 20. The prosthetic heart valve of claim 19, wherein the suture loop comprises first and second windings arranged in a repeating pattern of figure-eight shape curves, the plurality of first sections comprises a plurality of first sections of the first winding alternating with a plurality of first sections of the second winding, and the plurality of second sections comprises a plurality of second sections of the first winding alternating with a plurality of second sections of the second winding.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of International Application No. PCT/US2020/026368, filed Apr. 2, 2020, which claims the benefit of U.S. Provisional Application No. 62/832,402, filed Apr. 11, 2019, both of which applications are incorporated herein by reference.

US Referenced Citations (299)
Number Name Date Kind
3409013 Berry Nov 1968 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
RE30912 Hancock Apr 1982 E
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4441216 Ionescu et al. Apr 1984 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4820299 Philippe et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628792 Lentell May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
6027525 Suh et al. Feb 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6338740 Carpentier Jan 2002 B1
6350277 Kocur Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440764 Focht et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz et al. Mar 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6652578 Bailey et al. Nov 2003 B2
6689123 Pinchasik Feb 2004 B2
6716244 Klaco Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6769161 Brown et al. Aug 2004 B2
6783542 Eidenschink Aug 2004 B2
6830584 Seguin Dec 2004 B1
6878162 Bales et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7096554 Austin et al. Aug 2006 B2
7225518 Eidenschink et al. Jun 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316710 Cheng et al. Jan 2008 B1
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7563280 Anderson et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7785366 Maurer et al. Aug 2010 B2
7959665 Pienknagura Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7993394 Hariton et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8075611 Millwee et al. Dec 2011 B2
8128686 Paul, Jr. et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8291570 Fidenschink et al. Oct 2012 B2
8348998 Pintor et al. Jan 2013 B2
8449606 Eliasen et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8652203 Quadri et al. Feb 2014 B2
8685055 VanTassel et al. Apr 2014 B2
8747463 Fogarty et al. Jun 2014 B2
9078781 Ryan et al. Jul 2015 B2
20010021872 Bailey et al. Sep 2001 A1
20020026094 Roth Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020143390 Ishii Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030014105 Cao Jan 2003 A1
20030040791 Oktay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040024452 Kruse et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050075725 Rowe Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20060004469 Sokel Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060108090 Ederer et al. May 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060183383 Asmus et al. Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070112422 Dehdashtian May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080183271 Frawley et al. Jul 2008 A1
20080208327 Rowe Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080275537 Limon Nov 2008 A1
20080294248 Yang et al. Nov 2008 A1
20090118826 Khaghani May 2009 A1
20090125118 Gong May 2009 A1
20090157175 Benichou Jun 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090299452 Eidenschink et al. Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100004735 Yang et al. Jan 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100100176 Elizondo et al. Apr 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110066224 White Mar 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120030090 Johnston et al. Feb 2012 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120123529 Evi et al. May 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130310926 Hariton Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140194981 Menk et al. Jul 2014 A1
20140200661 Pintor et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140277417 Schraut et al. Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277563 White Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20150073545 Braido Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150135506 White May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20160374802 Levi et al. Dec 2016 A1
20170014229 Nguyen-Thien-Nhon et al. Jan 2017 A1
20170231761 Cohen-Tzemach Aug 2017 A1
20180028310 Gurovich et al. Feb 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180325665 Gurovich et al. Nov 2018 A1
20180344456 Barash et al. Dec 2018 A1
20190159894 Levi et al. May 2019 A1
20190192288 Levi et al. Jun 2019 A1
20190192289 Levi et al. Jun 2019 A1
Foreign Referenced Citations (76)
Number Date Country
0144167 Sep 1903 DE
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0051451 May 1982 EP
0103546 Mar 1984 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9930646 Jun 1999 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
0018333 Apr 2000 WO
0041652 Jul 2000 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0047139 Sep 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
2005034812 Apr 2005 WO
2005055883 Jun 2005 WO
2005084595 Sep 2005 WO
2006014233 Feb 2006 WO
2006032051 Mar 2006 WO
2006034008 Mar 2006 WO
2006111391 Oct 2006 WO
2006127089 Nov 2006 WO
2006138173 Dec 2006 WO
2005102015 Apr 2007 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2007097983 Aug 2007 WO
2008005405 Jan 2008 WO
2008015257 Feb 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009053497 Apr 2009 WO
2009061389 May 2009 WO
2009094188 Jul 2009 WO
2009116041 Sep 2009 WO
2009149462 Dec 2009 WO
2010011699 Jan 2010 WO
2010121076 Oct 2010 WO
2013106585 Jul 2013 WO
2015085218 Jun 2015 WO
Non-Patent Literature Citations (12)
Entry
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 3. pp. 704-708. 1992.
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992.
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994.
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197.
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989.
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986.
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986.
Walther T, Dehdashtian MM, Khanna R, Young E, Goldbrunner PJ, Lee W. Trans-catheter valve-in-valve implantation: In vitro hydrodynamic performance of the SAPIEN+cloth trans-catheter heart valve in the Carpentier-Edwards Perimount valves. Eur J Cardiothorac Surg. 2011;40(5):1120-6. Epub Apr. 7, 2011.
Fontaine, M.D., Arthur B., et al., “Vascular Stent Prototype; Results of Preclinical Evaluation”, p. 29-34; Technical Developments and Instrumentation; Jan.-Feb. 1996, vol. 7, No. 1.
Fontaine, M.D., Arthur B., et al., “Prototype Stent: Invivo Swine Studies in the Biliary System1”, p. 101-105, Journal of Vascular and Interventional Radiology; Jan.-Feb. 1997; vol. 8, No. 1.
Patrick W. Serruys, Nicolo Piazza, Alain Cribier, John Webb, Jean-Claude Laborde, Peter de Jaegere, “Transcatheter Aortic Valve Implantation: Tips and Tricks to Avoid Failure”; we file the table of contents and pp. 18 to 39 (Chapter 2) and pp. 102-114 (Chapter 8); the publication date according to the “Library of Congress Cataloging-in-Publication Data” is Nov. 24, 2009.
Related Publications (1)
Number Date Country
20220023036 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
62832402 Apr 2019 US
Continuations (1)
Number Date Country
Parent PCT/US2020/026368 Apr 2020 WO
Child 17496670 US