The present disclosure relates to a method of assembling an electrode suitable for use in a plasma torch.
More cost and time efficient methods for assembling together the parts of a plasma torch electrode are needed.
The present disclosure is directed towards methods of assembling a plasma torch electrode. According to one implementation a method includes securing together an emitter of the electrode inside an emitter holder while at the same time securing together the emitter holder inside a tubular body of the electrode. The securing together is accomplished by simultaneously applying a proximal directed force to the emitter and a distal directed force to the emitter holder to induce a bulging of the emitter inside the emitter holder to cause an external surface of the emitter to forcefully contact an internal surface of the emitter holder, and to induce a bulging of the emitter holder inside the distal end of the tubular body to cause an external surface of the emitter holder to forcefully contact an internal surface of the tubular body to produce a leak-tight seal and an electrical connection between the emitter holder and the tubular body. According to some implementations, the securing together is accomplished without soldering or fusing the emitter holder to the tubular body and without soldering or fusing the emitter to the emitter holder.
Each of the tubular body, emitter and emitter holder are respectively made of first, second and third materials that are different from one another. The first material may be, for example, copper or a copper alloy, the second material may be, for example, hafnium, tungsten, zirconium and their alloys, and the third material may be, for example, silver. In the assembly methods of the present application, when the proximal and distal directed forces are applied to cause a joining of the respective parts as discussed above, none of the first, second and third materials combine with one another to form an alloy of the materials. Instead, the first, second and third materials remain as they were prior to the electrode assembly process. Thus, when it is stated herein that the parts are secured together without “fusing”, it is meant that the first, second and third materials do not melt together or otherwise combine to form another type of material.
The methods of assembling an electrode disclosed and contemplated herein reduce assembly times and manufacturing costs. These and other advantages and features will become evident in view of the drawings and detailed description.
Various implementations of assembling an electrode of a plasma torch are disclosed herein. Although the disclosure is directed to the securing together of an emitter, emitter holder and tubular body to form the electrode, it is appreciated that the electrode may have any of a variety of other parts.
According to some implementations, the emitter 20 is a cylindrical body that includes a distal end 21, a proximal end 22 and a cylindrical external wall 23. In its original state, as shown in
According to some implementations, the emitter holder 30 includes an internal cavity 34 that has an open distal end 38 and a closed proximal end 39. According to some implementations, a distal end section 34a of the cavity is cylindrical, and a proximal end section 34b of the cavity is cone-shaped formed by a converging inner wall 37. According to some implementations, the emitter holder 30 includes a proximally protruding part 35 that is meant to reside inside a cavity 44 of the tubular body 40 before and after the electrode is assembled, the purpose of which is discussed below. The emitter holder 30 includes a cylindrical body 31 in which the cavity 34 resides. The cylindrical body 31 includes a distal end 32, proximal end 33 and an external cylindrical wall 36. When the emitter holder 30 is in its original state, as shown in
With continued reference to
According to some implementations, in the pre-assembled state the cylindrical portion 31 of the emitter holder 30 and the through opening 42 of the tubular body 40 are dimensioned such that a gap G2 of 0.0005 inches to 0.001 inches exist between the outer cylindrical wall 34 of the emitter holder and the internal wall 43 of the through opening 42, and such that the distal end 31 of the emitter holder 30 is located distal to the distal end 41 of the tubular body by a distance d2 of 0.0001 inches to 0.02 inches.
With the emitter 20, emitter holder 30 and tubular body 40 arranged in their pre-assembled states as shown in
According to some implementations, the heads 51 and 61 of tools 50 and 60 are cylindrical in form and have diameters D6 and D7 that are each less than the diameter D5 of the through opening 42 extending through the distal end section of the tubular body 40. According to some implementations, the first and second heads 51 and 61 have different diameters. According to some implementations, the second head 61 has a diameter that is less than the diameter of the first head 51. It is important to note that the geometric form of heads 51 and 61 need not be cylindrical, but in any event, according to some implementations the heads 51 and 61 are sized not to contact the tubular body 40 during the application of proximal and distal directed forces F1 and F2.
According to some implementations, the distance d2 and the load applied by forces F1 and F2 are selected such that distal end 31 of the emitter holder 30 is flush with or located distal to the distal end 41 of the tubular body by a distance less than d2 at the end of the application of forces F1 and F2. Even in the event of the distal end 31 of the emitter holder 30 being made flush with the distal end 41 of the tubular body 40 while forces F1 and F2 are being applied, after the forces F1 and F2 are removed, the distal end 31 of the emitter holder 30 may still thereafter distally protrude out of the through opening 42 of the tubular body 40 by a distance less than d2 due to the elasticity of the material from which the emitter holder is made.
According to some implementations, the distance d1 and the load applied by forces F1 and F2 are selected such that the distal end 21 of the emitter 20 is flush with or located distal to the distal end 31 of the emitter holder 31 by a distance less than d1 at the end of the application of forces F1 and F2, as shown in
As discussed above, according to some implementations the emitter holder 30 is equipped with a proximally protruding part 35. As shown in
The proximally protruding part 35 of the emitter holder 30, alternatively or in conjunction with its heat removal function, may simply act as a spacer that prevents any portion of the tool 60 from making contact with the tubular body 40 when the distal directed force F2 is being applied to the emitter holder 30.
According to some implementations, the proximally protruding part 35 is made to be shortened during the electrode assembling process as shown in
According to some implementations, after the electrode is in its assembled state, like that shown in
The following clauses represent, in some instance, additional implementations.
Clause 1: A method of securing together a tubular body, an emitter holder and an emitter to form an electrode, each of the emitter holder and emitter having a cylindrical body portion, the tubular body, emitter and emitter holder being respectively made of first, second and third materials that are different from one another, the securing together being accomplished without soldering or fusing the emitter holder to the tubular body and without soldering or fusing the emitter to the emitter holder, the method comprising:
positioning the cylindrical body portion of the emitter in a cylindrical portion of a cavity located in the emitter holder, the emitter having a first length and the cylindrical body portion of the emitter having a first diameter, the cavity having a second length and the cylindrical portion of the cavity having an internal wall and a second diameter, the second length being less the first length, the second diameter being greater than the first diameter;
positioning the cylindrical body portion of the emitter holder inside a cylindrical through hole located at a distal end of the tubular body, the emitter holder having a third length and the cylindrical body portion of the emitter holder having a third diameter, the cylindrical through hole having a fourth diameter that is greater than the third diameter and a fourth length that is less than the third length; and
simultaneously securing the emitter to the emitter holder and the emitter holder to the tubular body by simultaneously applying a first force to a distal face of the emitter and a second force opposite the first force to a proximal face of the emitter holder to cause an external surface of the cylindrical body portion of the emitter to bulge radially outward to forcefully contact the internal wall of the cylindrical cavity of the emitter holder and to cause an external surface of the cylindrical body of the emitter holder to bulge radially outward to forcefully contact a wall of the tubular body that defines the cylindrical through hole to produce a leak-tight seal and an electrical connection between the emitter holder and the wall of the tubular body.
Clause 2: The method according to clause 1, wherein each of the emitter and emitter holder shorten during the application of the first and second forces.
Clause 3: The method according to clause 1, wherein the cavity of the emitter holder has a closed proximal end.
Clause 4: The method according to clause 1, wherein a proximal end portion of the cavity of the emitter holder includes a wall that converges radially inward.
Clause 5: The method according to clause 1, wherein prior to the application of the first and second forces, a distal end of the emitter is located distal to a distal face of the emitter holder by 0.015 inches to 0.10 inches and the fourth diameter is 0.0001 inches to 0.0002 inches greater than the third diameter.
Clause 6: The method according to clause 1, wherein after the application of the first and second forces the distal end of the emitter protrudes from a distal face of the emitter holder by 0.0005 inches to 0.015 inches.
Clause 7: The method according to clause 1, wherein the emitter holder includes a part that proximally protrudes from the cylindrical body portion, the part having a first length before the application of the first and second forces and a second length after the application of the first and second forces, the second length of the part being less than the first length of the part.
Clause 8: The method according to clause 7, wherein the part resides inside a cavity of the tubular body both before and after the application of the first and second forces.
Clause 9: The method according to clause 1, wherein the first force is applied by a proximal facing surface of a first tool and the second force is applied by a distal facing surface of a second tool, each of the proximal and distal facing surfaces having a diameter that is less than the fourth diameter.
Clause 10: The method according to clause 9, wherein the proximal and distal facing surfaces have different diameters.
Clause 11: The method according to clause 9, where each of the proximal and distal facing surfaces is planar.
Clause 12: The method according to clause 9, wherein the proximal facing surfaces of the first tool is formed to produce in the distal face of the emitter a concave indentation.
Clause 13: The method according to clause 12, wherein the concave indentation has a maximum depth of between 0.047 inches to 0.075 inches.
Clause 14: The method according to clause 8, further comprising introducing a pressurized fluid into the cavity after the electrode is in its assembled state to determine integrity of the leak-tight seal.
Clause 15: The method according to clause 14, wherein the fluid is selected from the group consisting or air and water.
The particular implementations shown and described herein are illustrative examples of the invention and are not intended to otherwise limit the scope of the invention in any way. For the sake of brevity, conventional aspects of the components may not be described in detail.