A method of attaching a terminal and a coaxial cable with a terminal according to an embodiment of the present invention will be explained with reference to
As shown in
The center conductor 4 is made of metal, and formed in a line shape having a circular cross section. The circular conductor 4 is made of a one or a plurality of wires. The inner coating 5 is made of insulating synthetic resin. The braided conductor 6 is formed in a mesh shape by wires. The insulating sheath 7 is made of insulating synthetic resin. At an end of the coaxial cable 1, the insulating sheath 7 and the inner coating 5 are partially removed so that the center conductor 4, the inner sheath 5, and the braided conductor 6 are exposed. The insulating sheath is covered by the folded braided conductor 6 at the end of the coaxial cable 1.
As shown in
The inner terminal 8 is formed by folding a plate metal. The inner terminal 8 is crimped to the center conductor 4 to be attached to the coaxial cable 1. The inner terminal 8 is connected to various electronic components to supply electricity to them.
The insulating tube 9 is made of insulating and heat-shrinkable synthetic resin, and formed in a cylinder shape. The insulating tube 9 receives the inner terminal 8 and is shrunken by heating to be attached firmly to the inner terminal 8. The insulating tube 9 electrically isolates the inner terminal 8 from the shield terminal 10.
The shield terminal 10 is formed by folding a plate metal. The shield terminal 10 includes a main body 11 and a top end cap 12. The main body 11 includes a cap fixing part 13 and a wire connecting part 14.
The cap fixing part 13 is connected to the insulating tube 9 by fitting on an outer periphery of the insulating tube 9. The wire connecting part 14 includes a bottom wall 15 continued to the cap fixing part 13, a sleeve crimping part 16, and a sheath crimping part 17. A planar shape of the bottom wall 15 is formed in a rectangular shape, and an end of the bottom wall 15 is continued to the cap fixing part 13.
The sleeve crimping part 16 includes a pair of sleeve crimping pieces 18 extending vertically from outer edges of the bottom wall 15. The pair of sleeve crimping pieces 18 is extended from outer edges of the bottom wall 15 in a width direction thereof. A later described sleeve 20 attached to an end of the coaxial cable 1 is overlapped with the bottom wall 15, then the sleeve crimping part 16 is bent in a direction that the sleeve crimping pieces 18 approach the bottom wall 15. In the sleeve crimping part 16, the sleeve 20 attached to the end of the coaxial cable 1 is caught between the sleeve crimping pieces 18 and the bottom wall 15, and crimped to be electrically connected to the braided conductor 6 attached to the end of the coaxial cable 1. The sleeve crimping pieces 18 is a crimping piece in claims.
The sheath crimping part 17 includes a pair of sheath crimping pieces 19. The sheath crimping pieces 19 are extended from outer edges of the bottom wall 15 in a width direction thereof, and positioned further from the cap fixing part 13 than the sleeve crimping pieces 18.
The x is bent in a direction that the sheath crimping pieces 19 approach the bottom wall 15. In the sheath crimping part 17, the insulating sheath 7 of the coaxial cable 1 overlapped with the bottom wall 15 is caught between the sheath crimping pieces 19 and the bottom wall 15 and crimped.
A top end cap 12 is made of a plate metal and formed in a cylinder shape of which one end is closed. The top end cap 12 is attached to the cap fixing part 13 of the main body 11.
In the shield terminal 10, the cap fixing part 13 is attached to an outer periphery of the insulating tube 9, the sleeve crimping part 16 is crimped with the sleeve 20, and the sheath crimping part 17 is crimped with the insulating sheath 7, so that the shield terminal 10 is fixed to both the coaxial cable 1 and the insulating tube 9. Thus, the shield terminal 10 is electrically connected to the braided conductor 6 of the coaxial cable 1 via the sleeve 20. Resultingly, the shield terminal 10 is electrically connected to such as an earth of the electronic components.
The insulating tube 9 is fitted into an outer periphery of the inner terminal 8 attached to the center conductor 4 of the coaxial cable 1. The cap fixing part 13 of the main body 11 of the shield terminal 10 is fitted into the outer periphery of the insulating tube 9. The top end cap 12 is attached to the cap fixing part 13 of the main body 11. Thus, the terminal 2 is assembled. Then, in the terminal 2, the coaxial cable 1 and the sleeve 20 attached to the coaxial cable 1 are overlapped with the bottom wall 15, and the sleeve crimping pieces 18 and sheath crimping pieces 19 are bent toward the bottom wall 15 to crimp the sleeve 20 and the insulating sheath 7. Thus, the terminal 2 is attached to the end of the coaxial cable 1 and connected to the electronic components.
The terminal 2 is attached to the end of the coaxial cable 1 as described below. First, the inner coating 5 and the insulating sheath 7 at the end of the coaxial cable 1 are partially removed and as shown in
Then, with a rotary swaging machine 21 as shown in
The ring 22 is formed in a ring shape. The roller 23 is formed in a column shape and rotatably mounted on an inner circumference of the ring 22. The spindle 24 is disposed in the ring 22 coaxially with the ring 22. A not-shown motor rotates the spindle 24.
The hammer 25 and the die 26 are disposed side by side along a radial direction of the ring 22. The die 26 is disposed inner than the hammer 25 in the ring 22. Four dies 26 and four hammers 25 are disposed in a same interval in a circumferential direction of the ring 22. Namely, four of dies 26 and the hammers 25 are disposed at 90 degrees relative to each other. The sleeve 20 is interposed between the dies 26. The sleeve 20 is efficiently knocked by the four dies 26 bit by bit to be crimped. Thus, the sleeve 20 is crimped uniformly.
The not-shown motor rotates the spindle 24 of the rotary swaging machine 21. Thus, the die 26 and the hammer 25 are rotated together in a direction of an arrow C. When a top of a cam face 25a of the hammer 25 touches the roller 23, the dies 26 are closed inward in a direction of an arrow D to knock the sleeve 20 in a radial direction. As a slope of the cam face 25a touches the roller 23, the dies 26 are opened outward in a direction of arrow E by a centrifugal force. In the rotary swaging machine 21, this action is repeated in a small pitch to press all around the sleeve 20 equally.
Thus, all around the sleeve 20 is equally pressed, so that the sleeve 20 and the braided conductor 6 are closely attached to each other, and the sleeve 20 is attached to the end of the coaxial cable 1. Then, the inner terminal 8 is attached to the center conductor 4, the insulating tube 9 covers the outer periphery of the inner terminal 8, and the insulating tube 9 is heated. Then, the inner terminal 8 and the insulating tube 9 are closely attached to each other.
Then, the cap fixing part 13 of the main body 11 is fitted into the outer periphery of the insulating tube 9. The top end cap 12 is attached to the cap fixing part 13 of the main body 11. Thus, the terminal 2 is assembled. Then, the coaxial cable 1 and the sleeve 20 attached to the coaxial cable 1 are overlapped with the bottom wall 15. The sleeve crimping pieces 18 and the sheath crimping pieces 19 are bent toward the bottom wall 15 to crimp the sleeve 20 and the insulating sheath 7. Thus, the terminal 2 is attached to the end of the coaxial cable 1 to attain the coaxial cable 3 with the terminal.
According to the present embodiment, because the sleeve 20 having the braided conductor 6 inside thereof is pressed all around equally so that the braided conductor 6 and the sleeve 20 are closely attached to each other, even when the sleeve 20 and the braided conductor 6 are closely attached to each other, the sleeve 20, namely, the terminal 2 is prevented from being deformed to be flattened.
Thus, the coaxial cable having the sleeve 20 is kept circular, the characteristic impedance of the coaxial cable 1 having the sleeve 20 is prevented from being reduced. Therefore, a passing characteristic of a high frequency signal, in particular over 100 MHz, is prevented from being worse.
The braided conductor 6 covering the insulating sheath 7 is inserted into the sleeve 20, and the terminal 2 is attached to the sleeve 20, the braided conductor 6 inserted into the sleeve 20 is supported by the insulating sheath 7, the braided conductor 6, the center conductor 4, the and the inner coating 5. Therefore, rigidity of the braided conductor 6 inserted into the sleeve 20 is increased. Therefore, the coaxial cable 1 having the sleeve 20 is surely kept circular.
Because the terminal 2 includes the sleeve crimping pieces 18 for crimping the sleeve 20, the terminal 2 can be attached to the sleeve 20 with an easy process. Therefore, the terminal 2 can be attached to the braided conductor 6 of the coaxial cable 1 with an easy process.
In the embodiment described above, the terminal 2 includes the inner terminal 8 for connecting to the center conductor 4. However, according to the present invention, the terminal 2 may not have the inner terminal 8 and only have the sleeve crimping pieces 18 for crimping the sleeve 20. In the embodiment described above, the braided conductor 6 covers the insulating sheath 7. However, according to the present invention, as shown in
Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention hereinafter defined, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2006-121056 | Apr 2006 | JP | national |