This application claims priority of Taiwanese Invention Patent Application Nos. 108145309 and 109124842, respectively filed on Dec. 11, 2019 and Jul. 22, 2020.
The disclosure relates to an order picking method that is adapted for warehouse logistics, and more particularly to a method of automated order picking.
Nowadays, in warehouses for e-commerce businesses, distribution logistics or factories, automated picking systems have been gradually introduced to assist and guide pickers to perform picking correctly, rapidly and easily. After the picking process is completed, the picking baskets are transported to a packing station via conveyor belts, and then a packer proceeds with quality assurance, sealing and labeling. However, once the picking basket arrives at the packing station, the packer must decide which size of box should be used for packing. Incorrect decision may result in waste of resource and time. If the packer decides to use an oversized box for packing, it would be a waste of packaging material.
If the packer decides to use an undersized box for packing, repacking may be required because of insufficient inner space of the box, resulting in a waste of time. Manual packing is therefore a hindrance to improving packing and shipping efficiency of products.
Therefore, an object of the disclosure is to provide a method of automated order picking, and a system that implements the method. The method can alleviate at least one of the drawbacks of the prior art.
According to one embodiment of the disclosure, the system includes a control device, a first three-dimensional (3D) camera device, a first robotic arm, a code reader unit, a second 3D camera device and a second robotic arm. Each of the first 3D camera device, the first robotic arm, the code reader unit, the second 3D camera device and the second robotic arm is electrically connected to and controlled by the control device. The method includes: A) by the first 3D camera device, capturing a first 3D image of first-platform objects that are placed on a first platform, and transmitting the first 3D image to the control device; B) by the control device, controlling a first robotic arm to pick up one of the first-platform objects that is placed on the first platform based on the first 3D image; C) by the code reader unit, acquiring an identification code of the picked one of the first-platform objects, and transmitting the identification code to the control device; D) by the second 3D camera device, capturing a second 3D image of the picked one of the first-platform objects, and transmitting the second 3D image to the control device; E) by the control device, calculating a volume of the picked one of the first-platform objects based on the second 3D image; F) by the control device, controlling the first robotic arm to place the picked one of the first-platform objects on an area of a second platform that is currently empty, the picked one of the first-platform objects that has been put on the second platform serving as a second-platform object; G) repeating steps A)to F) to make the second platform have a plurality of the second-platform objects thereon; H) by the control device, upon determining that the second-platform objects include all order items of an order based on the identification codes that correspond to the second-platform objects, selecting a packing box of which a size fits the volumes of the order items, and controlling the second robotic arm to pick up the order items from the second platform and to place the order items into the packing box.
According to another embodiment of the disclosure, the system includes a control device, a 3D camera device and a robotic arm. Each of the 3D camera device and the robotic arm is electrically connected to and controlled by the control device. The method includes: A) by the 3D camera device, capturing a 3D image of at least one object that is included in an order and that is placed on a platform, and transmitting the 3D image to the control device; B) by the control device, calculating a volume of the at least one object based on the 3D image; and by the control device, selecting a packing box of which a size fits the volume of the at least one object, and controlling the robotic arm to pick up the at least one object from the platform and to place the at least one object into the packing box.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment(s) with reference to the accompanying drawings, of which:
Before the disclosure is described in greater detail, it should be noted that where considered appropriate, reference numerals or terminal portions of reference numerals have been repeated among the figures to indicate corresponding or analogous elements, which may optionally have similar characteristics.
In this embodiment, the code reader unit 4 includes a plurality of barcode scanners 41 that are disposed next to the first platform 7 in the first platform area. In this embodiment, the code reader unit 4 is exemplified to include four barcode scanners 41 that are respectively positioned next to four corners or four sides of the first platform 7 but this disclosure is not limited to such. In practice, a number of barcode scanners 41 included in the code reader unit 4 and locations of the barcode scanners 41 may be adjusted as required. In other embodiments, the code reader unit 4 may be a radio-frequency identification (RFID) tag reader. In other embodiments, the barcode scanners 41 may be disposed in the second platform area (e.g., next to the second platform 8). The second 3D camera device 22 is disposed next to the second platform 8, and is controlled by the control device 1 to capture a 3D image (referred to as second 3D image hereinafter) of the picked one of the first-platform objects 10, and to transmit the second 3D image to the control device 1. In other embodiments, the second 3D camera device 22 may be disposed in the first platform area (e.g., next to the first platform 7). The second robotic arm 6 is disposed next to the second platform 8, is proximate to a packing area 9, and is controlled by the control device 1 to pick up one of multiple objects (referred to as second-platform objects 20 hereinafter) that are disposed on the second platform 8, and to place the picked one of the second-platform objects 20 into a packing box that is placed in the packing area 9. The second-platform objects 20 may be those of the first-platform objects 10 that were picked up from the first platform 7 and placed on the second platform 8 by the first robotic arm 3.
In this embodiment, the packing area 9 may be provided with a plurality of boxes of different sizes in advance. As exemplarily shown in
Upon receipt of one or more orders, the control device 1 may perform steps as shown in
In step S1, the control device 1 controls the first 3D camera device 21 to capture the first 3D image of the first-platform objects 10 that are placed on the first platform 7, and to transmit the first 3D image to the control device 1.
In step S2, the control device 1 analyzes the first 3D image to select one of the first-platform objects 10 to pick up, and controls the first robotic arm 3 to pick up the selected one of the first-platform objects 10 from the first platform 7. In this embodiment, the selected one of the first-platform objects 10 is the one that is easiest to be picked up by the first robotic arm 3 (e.g., the nearest one and/or the highest one (at the most elevated position relative to the first platform 7)), but this disclosure is not limited in this respect.
In step S3, the control device 1 controls the code reader unit 4 to acquire an identification code of the picked one of the first-platform objects 10, and to transmit the identification code to the control device 1. In case that the code reader unit 4 includes multiple barcode scanners 41 that are next to the first platform 7 (or the second platform 8), when the first robotic arm 3 brings and moves the picked one of the first-platform objects 10 to be above the first platform 7 (or the second platform 8), the barcode scanners 41 will scan a barcode disposed on the picked one of the first-platform objects 10 that is currently held by the first robotic arm 3 to acquire the identification code. In case that the code reader unit 4 is an RFID tag reader that is next to the first platform 7 (or the second platform 8), when the first robotic arm 3 brings and moves the picked one of the first-platform objects 10 to be above the first platform 7 (or the second platform 8), the RFID tag reader will read an RFID tag disposed on the picked one of the first-platform objects 10 that is currently held by the first robotic arm 3 to acquire the identification code.
In step S4, when the picked one of the first-platform objects 10 is taken and moved by the first robotic arm 3 to be above the second platform 8 (or the first platform 7), the control device 1 controls the second 3D camera device 22 that is disposed next to the second platform 8 (or the first platform 7) to capture the second 3D image of the picked one of the first-platform objects 10, and to transmit the second 3D image to the control device 1. The control device 1 calculates a volume of the picked one of the first-platform objects 10 based on the second 3D image, and records a correspondence between the volume thus calculated and the identification code that corresponds to the picked one of the first-platform objects 10. It is noted that the term “volume” herein is not merely limited to referring to amount of space occupied by an object, but may also refer to measures of multiple dimensions of the object. Since calculation of the volume/dimensions of the picked one of the first-platform objects 10 is well known in the art, details thereof are omitted herein for the sake of brevity. For example, a plane where a flange face of the first robotic arm 3 is located may serve as a reference plane for defining z=0, which can be used to calculate a minimum cube that encloses the point cloud of the picked one of the first-platform objects 10, and the volume/dimensions of the minimum cube can serve as the volume/dimensions of the picked one of the first-platform objects 10.
In step S5, the control device 1 controls the first robotic arm 3 to place the picked one of the first-platform objects 10 on an empty area of the second platform 8 (i.e., an area of the second platform 8 that is currently not occupied by any object). As a result, the picked one of the first-platform objects 10 that has been put on the second platform 8 serves as a second-platform object 20. In this embodiment, the second platform 8 is configured to have a plurality of placement areas 81 that are arranged in an array. As exemplified in
After step S5, the control device 1 controls the first 3D camera device 21, the first robotic arm 3, the code reader unit 4 and the second 3D camera device 22 to repeat steps S1 to S5 for bringing another one of the first-platform objects 10 to the second platform 8, so as to make the second platform 8 have a plurality of the second-platform objects 20 thereon.
Meanwhile, in step S6, the control device 1 continuously determines, based on the identification codes that correspond to the second-platform objects (i.e., the objects that are currently placed on the second platform 8), whether the second-platform objects 20 include all order items of a single order. It is noted that each of the order items has an identification code, and the control device compares the identification codes of the second-platform objects 20 with the identification codes of the order items to make the determination. The flow goes to step Si when the determination is affirmative, and repeats step S6 when otherwise.
In step S7, the control device 1 selects a packing box of which a size fits the volumes of the order items combined (i.e., a combined volume of the order items), and controls the second robotic arm 6 to pick up the order items from the second platform 8 and to place the order items into the packing box. As an example, if an order includes a single order item or multiple order items (the plural form is used hereinafter for the sake of clarity, but this disclosure is not limited to such), and all of the order items have already been placed on the second platform 8 (i.e., the order items are part of the second-platform objects 20), the control device 1 selects, based on the volumes of the order items that were acquired in step S4 when the order items were taken from the first platform 7 to the second platform 8 (the order items were part of the first-platform objects 10 before being taken to the second platform 8), a packing box of which a size fits the combined volume of the order items the best. The control device 1 may adopt a conventional algorithm, such as random-order bin packing, best-fit bin-packing with random order, etc., to calculate an optimal packing arrangement (including planar arrangement and/or stacking of the order items) based on the volumes of the order items, and select the packing box based on the optimal packing arrangement thus calculated. In this embodiment, as exemplified in
In other embodiments where no boxes are placed in the packing area 9 in advance, the control device 1 selects a box size for packing the order items from among a plurality of predetermined box sizes based on the volumes of the order items, and then the packing box of the selected box size is sent to the packing area 9 using a conveyor mechanism (not shown). In some cases that a distance between the second platform 8 and the packing area 9 is so long that the second robotic arm 6 cannot bring an object from one to the other, a track (not shown) that extends from the second platform area to the packing area 9 may be provided, so that the second robotic arm 6 can be placed on the track and be movable between the second platform area and the packing area 9.
As an example, when an order has three order items, only two of which are placed on the second platform 8, the control device 1 will not perform step S7 for this order. Only after the remaining one of the order items is placed on the second platform S will the control device 1 perform step S7 for this order, where the control device 1 calculates an optimal packing arrangement for the three order items based on the volumes of the three order items, selects/determines a packing box that fits the volumes of the three order items based on the optimal packing arrangement, and controls the second robotic arm 6 to pick up the three order items from the second platform 8 and to put the three order items into the selected packing box one by one according to the optimal packing arrangement. Before the remaining one of the order items is placed on the second platform 8, if there is another order of which the order items are all placed on the second platform 8, the control device 1 will perform step S7 for said another order first.
In one implementation, the control device 1 may determine an optimal packing order for the order items based on the volumes of the order items in step S7, and then control the second robotic arm 6 to put the order items into the packing box according to the optimal packing order. For example, an order item that has a greater volume may be put into the packing box before an order item that has a smaller volume. If an order has a first order item, a second order item and a third order item where the three order items from greatest to smallest in terms of volume are the second order item, the first order item, and the third order item, then the second, first and third order items will be put into the packing box in the given order.
In another implementation, the second platform 8 includes a weighing scale 82 that is used to measure a weight of the second-platform objects 20 placed on the second platform 8. The control device 1 acquires a weight of each of the second-platform objects 20 based on the weight measured by the weighing scale 82 after the picked one of the first-platform objects (i.e., new second-platform object 20) is placed on the second platform 8 in step S5. The weighing scale 82 is reset when the placement areas 81 of the second platform 8 are all empty, so when an object is placed on the second platform 8 (i.e., the first second-platform object 20 that is put on the second platform 8), the weighing scale 82 directly measures and transmits the weight of the object (referred to as first weight hereinafter) to the control device 1. When another object is subsequently placed on the second platform 8 (i.e., becoming a second-platform object 20 that is put on the second platform 8), the weighing scale 82 transmits a total weight measured thereby (referred to as second weight hereinafter) to the control device 1, and the control device 1 subtracts the first weight from the second weight to obtain a weight of the another object. Accordingly, the weight of each of the second-platform objects 20 can be acquired in such a manner. In addition, when one of the second-platform objects 20 is taken away from the second platform 8, the weighing scale 82 will transmit a newly measured weight to the control device 1, so the control device 1 can keep the overall weight of the remaining second-platform objects 20 up to date in order to properly calculate the weight of a newly arrived second-platform object 20. Furthermore, the control device 1 records and stores, for each of the second-platform objects 20, correspondence among the identification code, the volume, the coordinates of the placement area 81 and the weight that correspond to the second-platform object 20 in a database (not shown). Then, the control device 1 controls in step S7, based on the weights of the second-platform objects 20, the second robotic arm 6 to put the order items into the packing box in an order (optimal packing order) from heaviest to lightest. In such a scenario, if an order has a first order item, a second order item and a third order item where the three order items from greatest to smallest in terms of weight are the first order item, the second order item, and the third order item, the first, second and third order items will be put into the packing box in the given order.
In yet another implementation, the control device 1 may take both the volume and the weight of each of the second-platform objects 20 and the optimal packing arrangement into consideration in determining the optimal packing order.
Referring back to
In one example, the first platform 7 may be one of a plurality of drawers of a storage cabinet, and the first-platform objects 10 are prepared and placed in the drawer in advance according to an order (i.e., the first-platform objects 10 are the order items of the order). After the control device 1 or other control equipment controls the storage cabinet to open the drawer, the control device 1 can repeatedly perform steps S1 through S5 to control the first robotic arm 3 to bring the first-platform objects 10 to the second platform 8 (making the first-platform objects 10 become second-platform objects 20) one by one, acquire the identification codes, the volumes and the weights of the second-platform objects 20, determine that the second-platform objects 20 include all of the order items (i.e., all of the first-platform objects 10 that were placed in the drawer) of the order in step S6, and then control the second robotic arm 6 to put the order items that are placed on the second platform 8 into the packing box one by one in step S7. In some embodiments, the drawer may be provided with many different objects that are randomly arranged. In some embodiments, the drawer may be provided with many different objects that are arranged in order or placed in different spaces in the drawer that are separated by grids for the first robotic arm 3 to pick up one of the first-platform objects 10 that is specified by the control device 1.
It is noted that steps S6, S7 and the repetition of steps S1-S5 may be performed at the same time, so the first and second robotic arms 3, 6 may operate at the same time in order to promote work efficiency. When the first and second robotic arms 3, 6 simultaneously perform actions (i.e., placing an object and picking up an object) in relation to the second platform 8, the first and second robotic arms 3, 6 may collide with each other because their movement trajectories may overlap or cross each other. To avoid such condition, a collision avoidance mechanism may be applied to this embodiment. The collision avoidance mechanism is used by the control device 1 to calculate a first moving trajectory for the first robotic arm 3 and a second moving trajectory for the second robotic arm 6 in terms of time and path, so as to avoid collision between the first robotic arm 3 and the second robotic arm 6 when the first robotic arm 3 moves along the first moving trajectory and the second robotic arm 6 moves along the second moving trajectory. In one implementation of the collision avoidance mechanism, the control device 1 calculates the movement trajectories for the first and second robotic arms 3, 6 before the actions are performed, and compares the movement trajectories to predict whether the first and second robotic arms 3, 6 will collide with each other. If affirmative, the control device 1 may adjust a movement path or time of the action for one or both of the first and second robotic arms 3, 6, so as to avoid the collision. In another implementation of the collision avoidance mechanism, robotic arm controllers (not shown) that are respectively provided on the first and second robotic arms 3, 6 may transmit the movement trajectories of the corresponding first and second robotic arms 3, 6 to the control device 1 in real time, so the control device 1 can quickly determine whether the first and second robotic arms 3, 6 will collide with each other accordingly. If affirmative, the control device 1 may immediately adjust a movement path or time of the action for one or both of the first and second robotic arms 3, 6, so as to avoid the collision. In yet another implementation of the collision avoidance mechanism, an additional monitoring system (not shown) may be provided in the second platform area to monitor the movement trajectories for the first and second robotic arms 3, 6. The monitoring system transmits the monitored movement trajectories to the control device 1 in real time, so the control device 1 can quickly determine whether the first and second robotic arms 3, 6 will collide with each other accordingly. If affirmative, the control device 1 may immediately adjust a movement path or time of the action for one or both of the first and second robotic arms 3, 6, so as to avoid the collision.
In some embodiments, as exemplified in
In some embodiments, as exemplified in
In some embodiment, as exemplified in
The control device 1 finds an empty area 801 of the second platform 8 for placement of the picked one of the first-platform objects 10 based on the volume of the picked one of the first-platform objects 10 and the top surface of the second platform 8 as shown in the second 3D image. Then, the control device 1 controls the first robotic arm 3 to place the picked one of the first-platform objects 10 on the area 801 of the second platform 8 thus determined in step S5, and records correspondence among coordinates of the area 801 that is now occupied by the picked one of the first-platform objects 10, the volume of the picked one of the first-platform objects 10 and the identification code that corresponds to the picked one of the first-platform objects 10. In step S7, the control device 1 controls the second robotic arm 6 to pick up each of the order items from the second platform 8 based on the coordinates that correspond to the identification code of the order item, and to put the order item into the packing box.
Referring to
When the first embodiment is performed using the second exemplary system, the first and second robotic arms 3, 6 mentioned in the previous description in relation to the first exemplary system (see
Referring to
Then, the control device 1 selects a packing box of which a size fits the volumes of the order items that are placed on the second platform 8, and controls the second robotic arm 6 to pick up the order items from the second platform 8 and to place the order items into the packing box according to the optimal packing arrangement for the order items.
Details of selecting the packing box and bringing the order items from the second platform 8 to the packing box are the same as those described for the first embodiment, and thus are not repeated herein for the sake of brevity. In some embodiments, the third exemplary system may be provided with a track 200 that extends from the second platform area to the packing area 9, and the second robotic arm 6 is placed on the track 200, so that the second robotic arm 6 is movable between the second platform area and the packing area 9.
In summary, in the first embodiment of the method of automated order picking according to this disclosure, the control device 1 controls a robotic arm to pick up the first-platform objects 10 one by one from the first platform 7, to acquire the identification code and the volume of the picked one of the first-platform objects 10, and to put the picked one of the first-platform objects 10 on the second platform 8. Then, after determining that all the order items of an order have been placed on the second platform 8, the control device 1 selects a packing box that fits the order items in size, and controls the same robotic arm or a different robotic arm to pick up the order items and to put the order items into the packing box, thereby completing the packing operation. In the second embodiment of the method of automated order picking according to this disclosure, the order items have been placed on the second platform 8 in advance, and the control device 1 selects a packing box that fits the order items in size, and controls a robotic arm to pick up the order items and to put the order items into the packing box, thereby completing the packing operation. As a result, the embodiments can avoid human errors in determining a size of the packing box, which may result in waste of packing material due to use of an oversized box, or result in the need to repack due to use of an undersized box. In addition, using the robotic arm(s) in place of manual packing may save manpower and enhance the efficiency in packing and shipping.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment(s). It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects, and that one or more features or specific details from one embodiment may be practiced together with one or more features or specific details from another embodiment, where appropriate, in the practice of the disclosure.
While the disclosure has been described in connection with what is (are) considered the exemplary embodiment(s), it is understood that this disclosure is not limited to the disclosed embodiment(s) but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
108145309 | Dec 2019 | TW | national |
109124842 | Jul 2020 | TW | national |