The invention describes the method of automatic identification of flying targets. This method uses physical motion information, time, 3/A code, and can be applied in tracking systems in satellite, navigation, transportation, and military.
In military, target identification is often conducted manually and based on personal experience. There are some proposed methods to identify the flying objects in the world, however, there still remained certain drawbacks. Those methods require specifying some basic attributes such as flight path of the target. The simplest way to identify the flight path of a flying target is to calculate the distance from the target to all available flight paths and choose the nearest one.
However, this method is expensive in computation due to the orthographic projection calculations. It also requires searching for the nearest flight path whenever the coordinates of flying target are updated. Moreover, when the target is near the airport or the intersection point of flight paths, it is not certain that the nearest flight path is the one that target follows.
Artificial Intelligence approaches such as Decision Tree method are also widely applied in object identification. However, as Decision tree is sensitive with data, if there is a change in training data, the output made by the decision trees then will be totally different from the previous one.
In order to handle these above problems, we propose a new method which could automatically identify flying targets based on the features of motion information, time, and 3/A code. This proposed method with automatic identification ability will optimize the process of target identification, reduce the human errors, and improve the accuracy of results.
The purpose of the invention is to propose a method to automatically identify a flying target based on its information of motion, time and 3/A code. This method is used to classify and label the targets corresponding with their activities including: Military/Domestic/Transit/International. The invention applies Random Forest technique with flying target's feature information of longitude, latitude, heading, speed, time, and 3/A code. From the feature space of flying target built from physical information (longitude, latitude, heading, and speed), time, and identification information (3/A code), the invention will construct a random forest containing multiple decision trees.
The proposed invention includes 2 basic steps:
Step 1: Feature Extraction: In this step, construct the feature space from input data. The novelty of this step is:
This feature extraction step contain these sub steps:
Discretizing coordinates in longitude-latitude grid by constructing discretized longitude
Extracting information of flight path by supplement information of other flight paths that intersect with each square in the discretized longitude-latitude grid. The squares that contain coordinates of the target will represent this target's flight path. Encode the flight path information into numeric form by binary encoder.
Extracting time information by converting time format from hour/minute/second to day/night format, in which, day represents the time span from 6 am to 6 pm and night applies for that from 6 pm to 6 am. We also use a binary encoder to assign day to 1 and night to 0;
The remaining information (heading, speed, 3/A code) is used as feature in the raw form.
Step 2: Voting decision trees.
Each Decision tree in the random forest will vote for one identification based on those above extracted features applied to the decision tree. We synthesize the results and choose the identification that got the majority voting.
This part describes in detail the method to automatically identify the flying target based on its information of motion, time and 3/A code through example, figure, and explanation.
In this invention, we explain those terms as below:
Identification information or 3/A code: is 4-digit code which is assigned for each flying target based on the convention of aviation to distinguish among the flying targets.
Decision tree: is a prediction model that maps the observations to the conclusion of target values of those observations. Each decision tree with input data will give a label of identification. The most voted identification label will be chosen to be the label of the target.
Identification label includes: Military (flying targets being planes which belong to Ministry of Defense to perform mission), Domestic (flying targets being planes with domestic flight route), Transit (flying targets being foreign planes transiting in current's country airspace), International (flying targets being planes with flight route between domestic airport and foreign airport).
As can be seen in
Step 1: Feature Extraction
This step is performed to construct feature spaces from input data.
The original input data of the flying target include: coordinates, heading, speed, time, and 3/A code (those information are only at an exact time). These information are too detailed, hence not suitable for being the feature of the data. As such, we need to generalize these information through the feature extraction process.
With the reference to the
Constructing the discretized longitude-latitude grid including the cell with longitude width Δp and latitude width Δθ. Those values of width are adjustable.
In an aspect of the implementation of the invention, the value of latitude width Δθ=0.5° and longitude width Δρ=0.5° give the best result.
The coordinates of the flying target will be replaced with cell indexes that the plane belongs, which means we map the plane's coordinates to the cell indexes.
In an aspect of the implementation of the invention, if the coordinates of the flying targets are 102°12′50″(102,2138°) and 21°48′34″(21,8094°), the flying target will locate in cell (204, 43).
With reference to
However, as mentioned from above, the method determining the optimal flight path from the set of many available flight paths has a drawback regarding to the expensive cost of computation due to the orthographic projection calculations. To solve this problem, the invention suggests the method to extract information from the flight path as below:
Supplementing the information of the flight path crossing each cell in the discretized latitude-longitude grid. For example, if cell (0, 0) has 3 flight paths A, B, C cross it, the flight path information of cell (0, 0) is (A, B, C)
Determining the flight path of the flying target as the flight path of the cell where the coordinates of the flying targets belong to. This proposed method reduces the cost of computation significantly, as we have already constructed the flight path information of the cells, thus there is no need to recalculate the flight path when the flying target's coordinates change. Additionally, each cell contains information of multiple flight paths, which allows assigning flying targets to a set of flight paths instead of only single one.
The information of flight paths are stored in text format, thus we need to convert them into numeric format as below:
Each flight path is assigned to a dimension of feature space, it is encoded by binary method with two values 0 and 1. To be specific:
If the flying target does not follow a particular flight path, this one is encoded as 0;
If the flying target follows a particular flight path, this one is encoded as 1.
For example:
If we have totally three available flight paths: A, B, and C, hence the feature space will has three dimensions. If the flying target is a plane following A path, it's feature will be encoded as (1,0,0), similarly, B and C one will be encoded as (0,1,0) and (0,0,1) and (1,1,1) for the whole three paths.
In an aspect of the implementation of the invention applied in Vietnam, there are 78 flight paths, hence flight path information for each plane flying target will be encoded in 78 dimensions of the feature space.
In an aspect of the implementation of the invention, with reference to
Step 2: Voting for identification
After extracting features, the next step is to build a machine learning model to automatically identify the class label of the flying targets. The set of class labels includes: Military, Domestic, Transit and International.
The main technique of the invention is Random Forest technique, which is a machine learning based method, building ensemble decision trees. Decision tree is also a machine learning based method, which can be described as below:
Random Forest technique is proposed in this invention to reduce the variances for decision tree technique. Random Forest uses a combination of decision trees instead of only single one to improve the stability and accuracy of the classification result.
In an aspect of the implementation of the invention, the 84-dimension vectors which were extracted from step 1 will be the input for training the Random Forest model.
Given the training dataset S of size n, the training phase of Random Forest is conducted as below:
Split dataset S into m subsets Si, i=1, . . . m, each subset has the size of n′, by sampling from S uniformly and with replacement. Sampling with replacement is a technique allowing some examples from original set S to be repeated in subsets Si.
If n=n′, then for large n the set Si is expected to have the fraction (1−1/e)≈63.2% of the unique examples of S, the rest will be duplicated.
The detail of the training phase is explained as below:
When determining the best features for splitting data at the nodes of decision trees, we only choose m features among the total of M features, regularly m=√{square root over (M)}. In an aspect of the implementation of the invention, m=√{square root over (84)}≈9.
After training the Random Forest model, in order to identify the class labels of the flying targets, we conduct extracting features of the flying targets, and traversing them through each decision tree of the Random Forest.
Each decision tree will give a vote for a class label with the input data are 84-dimensional vectors.
Aggregating the vote on each decision tree, we finalize the class label of flying target based on majority voting. Class label which received the most votes is the class label of the flying target.
In case there are class labels which received the same number of votes, we choose one label randomly.
Number | Date | Country | Kind |
---|---|---|---|
1-2018-05353 | Nov 2018 | VN | national |
Number | Name | Date | Kind |
---|---|---|---|
7719461 | Mookerjee | May 2010 | B1 |
8639476 | Martell | Jan 2014 | B2 |
20100148977 | Tseng | Jun 2010 | A1 |
20160103214 | Clark | Apr 2016 | A1 |
20160299223 | Testa | Oct 2016 | A1 |
20160363660 | Gudim | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
111225189 | Jun 2020 | CN |
111256697 | Jun 2020 | CN |
111898746 | Nov 2020 | CN |
112198870 | Jan 2021 | CN |
112327903 | Feb 2021 | CN |
112445238 | Mar 2021 | CN |
2695019 | Jul 2019 | RU |
Number | Date | Country | |
---|---|---|---|
20200175425 A1 | Jun 2020 | US |