The present disclosure relates generally to automated detection systems, and, more particularly, to a system and method for automatically detecting an anomalous condition relative to a nominal operating condition in a vapor compression system.
With increasing energy costs, there is a growing interest in energy monitoring. For instance, with the advent of demand-response pricing in which the price of electricity at the entry point to a building can fluctuate instantaneously, knowing the present power consumption and the allocation of power among the various devices and systems powered can be beneficial in optimizing energy cost.
Knowledge of whether the present rate of energy consumption is optimal or reasonable for the present conditions can also be beneficial. In some cases, whether these optimal conditions exist is relatively easy to determine. For example, when a room is totally unoccupied, it is reasonable to turn un-needed lights off. Similarly, in a home environment, leaving an electric oven “on” in the hot summer when no one is cooking is not normally a reasonable practice. By contrast, the optimal or appropriate operation of more complex appliances or equipment is less easy to determine.
As an example, undetected refrigerant loss in Vapor Compression Cycle (VCC) equipment, or a so-called heat pumping system that removes heat from one space and deposits in another, such as a residential or commercial heat pump, air conditioning or refrigeration system, can be a significant source of annoyance and cause of excessive and wasteful energy usage. Most refrigerant leakage losses are not fast enough to readily detect the degradation in performance of the unit over the course of a day or even a week. In cases in which VCC equipment is used strictly as an air conditioner, refrigerant loss can occur over the winter while the system is idle. When an air conditioning system is first turned on or activated in the spring, system usage is generally relatively low and a loss of efficiency due to refrigerant loss can go undetected, manifesting itself only when system usage increases on hotter days. In a residential split system that includes an outdoor compressor/condenser unit and an indoor evaporator/air handler unit, the compressor is located outside the residence, and the residents of a dwelling may not notice a problem until either an unexpectedly large bill is received from the utility or the capacity of the air conditioning system is degraded to the point where it cannot keep up with demand. In either case, frustration can result as many residences in a geographical region discover the problem simultaneously on a hot day, and it becomes challenging and time-consuming to dispatch technicians to diagnose and remedy this common problem. This problem extends to commercial systems as well. A method that can reliably and quickly detect and report abnormalities such as a loss of refrigerant would be highly desirable.
With the recent advent of higher energy prices, there is becoming increased interest in power and energy monitoring. Applied to an HVAC system, it is not sufficient to know merely how much energy is consumed, although this is useful information. More importantly, it would be useful to be able to predict whether the HVAC system is operating normally for the ambient conditions encountered, including the outdoor temperature and the conditions in the space for which temperature control is provided.
The expected normal operation of an HVAC system is not always intuitively apparent. First, there can be unit-to-unit manufacturing variations, including normal manufacturing tolerances, causing variation in compressor isentropic efficiency, condenser and evaporator efficiency, and other aspects. More importantly, no two systems are installed in precisely the same manner, resulting in different air flows across the condenser and evaporator coils from unit to unit, different lengths of refrigerant lines in split-system applications, and varying efficiency of refrigerant line insulation. Additionally, the system is highly sensitive to the level to which it is charged with refrigerant, and there is significant variance from unit to unit and from charging to charging that makes it very difficult to determine a-priori the power consumption of a system.
It would be desirable to provide a system and method that can automatically learn to predict the expected behavior of VCC-based equipment, and subsequently detect and report such conditions as refrigerant loss in a timely manner, without needing to disturb the vapor compression equipment in any way. The present disclosure is directed to such a system and method.
The present disclosure discloses systems and methods for continuously monitoring the compressor power and signals responsive to temperature for assessing and reporting the condition of a VCC-based air conditioner, heat pump or refrigeration system, or other heat pumping system. A Compressor Power Input Predictor (CIPP) relation between compressor power and certain signals responsive to temperature in the vicinity of the condenser and evaporator units can be learned by observing a properly charged air conditioner or heat pump over an interval of time, while the CIPP relation is established and validated.
The measured power can be continuously compared against the established CIPP relation, where a reduction in measured power compared with the predicted power is indicative of a loss of refrigerant. The indicated loss of refrigerant or condenser fouling can be communicated to another system so that early corrective maintenance of the condition can be carried out, minimizing discomfort to the building occupants while simultaneously reducing energy consumption. The correct refrigerant level can be quickly established or re-established in a system for which the appropriate refrigerant charge level has already been established initially, using the CIPP relation to indicate that the appropriate refrigerant charge level is established.
Various exemplary methods, which can also be implemented as systems or embodied in computer-readable medium, will be summarized next. These summaries are examples only, and are not intended to be an exhaustive recitation of the inventions disclosed herein.
According to an implementation of the aspects disclosed herein, a method of automatically detecting an anomalous condition relative to a nominal operating condition in a vapor compression system, includes: automatically calculating a measured input power function that includes a current measured from a compressor unit of the vapor compression system, which includes a condenser unit coupled to the compressor unit; receiving a condenser temperature indicative of an intake temperature from an intake of the condenser unit; automatically calculating an expected input power function that includes the condenser temperature; responsive to the expected input power function deviating from the measured input power function by more than a predetermined tolerance, storing an indication that an anomalous condition exists in the vapor compression system. The condenser temperature can be the intake temperature. The intake temperature can be received from a first temperature sensor positioned in the intake area of the condenser unit.
The method can further include receiving an interior temperature indicative of an indoor temperature of an indoor environment or a temperature of a closed managed thermal space within the indoor environment. The expected input power function can include the interior temperature. The interior temperature can be a thermostat setpoint temperature. The interior temperature can be an ambient temperature of an indoor environment on which the vapor compression system operates. Alternately, the interior temperature can be a return temperature from a temperature sensor positioned in an intake area of an evaporator unit in the vapor compression system. The expected input power function can include the return temperature. The interior temperature can be a supply temperature from a supply output area of an evaporator unit in the vapor compression system. The expected input power function can include the supply temperature.
The expected input power function can include a hyperplane, which includes a power offset constant, a first condenser temperature coefficient, and a second interior temperature coefficient. The power offset constant can be expressed in the unit of the measured input power function. The first condenser temperature coefficient can represent temperature sensitivity relating to the condenser temperature. The second interior temperature coefficient can represent temperature sensitivity relating to the return temperature. The first condenser temperature coefficient can be multiplied by the condenser temperature in the hyperplane, and the second interior temperature coefficient can be multiplied by the return temperature in the hyperplane.
The method can further include receiving a supply temperature at a supply output of the evaporator unit. The expected input power function can further include the supply temperature. The hyperplane can further include a third interior temperature coefficient representing temperature sensitivity to the supply temperature. The third interior temperature coefficient can be multiplied by the supply temperature in the hyperplane.
The method can further include automatically deriving the power offset constant, the first condenser temperature coefficient, the second interior temperature coefficient, and the third interior temperature coefficient by a least-squares regression analysis. The expected input power function can be independent of any pressure measurement relating to the vapor compression system.
In response to the measured input power function being less than the expected input power function by more than the predetermined tolerance, the anomalous condition can indicate a loss of refrigerant in the vapor compression system. The method can further include automatically calculating the expected input power function as refrigerant is added to the vapor compression system and, responsive to the expected input power function being within the predetermined tolerance of the measured input power function, indicating that the vapor compression system has returned to the nominal operating condition.
In response to the expected input power function being less than the measured input power function by more than the predetermined tolerance, the anomalous condition can indicate a fouling of the condenser unit in the vapor compression system or a malfunctioning fan in the vapor compression system. In response to the measured input power function being less than the expected input power function by more than the predetermined tolerance, the anomalous condition can represent a loss of refrigerant in the vapor compression system. The method can further include automatically comparing the expected input power function with the measured input power function, in response to additional refrigerant being added to the vapor compression system, until the expected input power function falls within the predetermined tolerance of the measured input power function, and indicating to an operator that no additional refrigerant is required to be added.
The current can correspond to a line current to the compressor unit measured by a current transformer. The measured input power function can include a line voltage measured across a line conductor and a neutral conductor connected to the compressor unit. The automatically calculating the measured input power function can be carried out in a power monitor coupled to the current transformer.
The interior temperature can be a return temperature from an intake area of an evaporator unit. The receiving the condenser temperature and the return temperature can be carried out at a sample rate interval, where the method further includes: delaying the automatically calculating the expected input power function by a predetermined number of cycles of a sample rate at which samples of the condenser temperature and the return temperature are received; and storing each sample of the condenser temperature and the return temperature.
The vapor compression system can include an air conditioner system, a heat pump system, a chiller, or a refrigeration system. The vapor compression system can include a heat pump system, refrigerant for the heat pump system can be evaporated in the condenser unit, and high-pressure refrigerant vapor can be compressed in the evaporator unit.
The method can further include: automatically determining whether the compressor unit is in an ON state or an OFF state by comparing the measured input power function against a power threshold constant for a predetermined number of cycles as determined by a sampling rate of the current measurements; and responsive to the measured input power function exceeding the power threshold constant for the predetermined number of cycles, storing an indication that the compressor unit is in the ON state. The method can further include deriving the power threshold constant by multiplying a nominal system voltage of the vapor compression system by a rated full-load current drawn by the compressor unit to produce a rated power, and multiplying the rated power by a percentage threshold. The method can further include, responsive to the measured input power function not exceeding the power threshold constant for a second predetermined number of cycles, storing an indication that the compressor unit is in an OFF state.
The condenser temperature can be of a gas or a liquid. The interior temperature can be of a liquid or a gas. The current measured from the compressor unit can be an RMS current calculated from the measured current. The condenser temperature can be an outdoor temperature of an outdoor environment.
According to another implementation of aspects of the present disclosure, a method of automatically detecting an anomalous condition relative to a nominal operating condition in a vapor compression system, includes: automatically calculating a measured input power function that includes a current measured from a compressor unit of the vapor compression system, which includes a condenser unit coupled to the compressor unit; receiving a condenser temperature indicative of an intake temperature from an intake area of the condenser unit; receiving an interior temperature indicative of an indoor temperature of an indoor environment or a temperature of a closed managed thermal space within the indoor environment; automatically calculating an expected input power function that includes the condenser temperature and the interior temperature; responsive to the expected input power function deviating from the measured input power function by more than a predetermined tolerance, storing an indication that an anomalous condition exists in the vapor compression system.
The interior temperature can be a return temperature from an intake area of an evaporator unit in the vapor compression system. The expected input power function can include a hyperplane. The hyperplane can include a power offset constant, a first condenser temperature coefficient, and a second interior temperature coefficient. The power offset constant can be expressed in the unit of the measured input power function. The first condenser temperature coefficient can represent temperature sensitivity relating to the condenser temperature. The second interior temperature coefficient can represent temperature sensitivity relating to the return temperature. The first condenser temperature coefficient can be multiplied by the condenser temperature in the hyperplane. The second interior temperature coefficient can be multiplied by the return temperature in the hyperplane.
The method can further include receiving a supply temperature at a supply output area of an evaporator unit in the vapor compression system. The expected input power function can further include the supply temperature. The interior temperature can be a return temperature from an intake area of an evaporator unit. The expected input power function can include a hyperplane. The hyperplane can include a power offset constant, a first condenser temperature coefficient, a second interior temperature coefficient, and a third interior temperature coefficient representing temperature sensitivity to an average of the return temperature and the supply temperature. The power offset constant can be expressed in the unit of the measured input power function. The first condenser temperature coefficient can represent temperature sensitivity relating to the condenser temperature. The second interior temperature coefficient can represent temperature sensitivity to the return temperature. The third interior temperature coefficient can represent temperature sensitivity to the supply temperature. The first condenser temperature coefficient can be multiplied by the condenser temperature in the hyperplane. The second interior temperature coefficient can be multiplied by the return temperature in the hyperplane. The third interior temperature coefficient can be multiplied by the supply temperature in the hyperplane.
In response to the measured input power function being less than the expected input power function by more than the predetermined tolerance, the anomalous condition can indicate a loss of refrigerant in the vapor compression system. In response to the expected input power function being less than the measured input power function by more than the predetermined tolerance, the anomalous condition can indicate a fouling of the condenser unit in the vapor compression system or a malfunctioning fan in the vapor compression system.
The method can further include: automatically determining whether the compressor unit is in an ON state or an OFF state by comparing the measured input power function against a power threshold constant for a predetermined number of cycles as determined by a sampling rate of the current measurements; responsive to the measured input power function exceeding the power threshold constant for the predetermined number of cycles, storing an indication that the compressor unit is in the ON state; deriving the power threshold constant by multiplying a nominal system voltage of the vapor compression system by a rated full-load current drawn by the compressor unit to produce a rated power, and multiplying the rated power by a percentage threshold; and responsive to the measured input power function not exceeding the power threshold constant for a second predetermined number of cycles, storing an indication that the compressor unit is in an OFF state.
According to yet another implementation of aspects of the present disclosure, a method of automatically detecting an anomalous condition relative to a nominal operating condition in a vapor compression system, includes: receiving input power measured from a compressor unit of the vapor compression system that includes a condenser unit coupled to the compressor unit; receiving a condenser temperature indicative of an intake temperature from an intake area of the condenser unit; receiving an interior temperature indicative of an indoor temperature of an indoor environment or a temperature of a closed managed thermal space within the indoor environment; receiving a supply temperature at a supply output area of the evaporator unit; automatically calculating an expected input power function that includes the condenser temperature, the interior temperature, and the supply temperature; responsive to the expected input power function deviating from the measured input power function by more than a predetermined tolerance, storing an indication that an anomalous condition exists in the vapor compression system.
The interior temperature can be a return temperature from an intake area of the evaporator unit. The expected input power function can include a hyperplane. The hyperplane can include a power offset constant, a first condenser temperature coefficient, a second interior temperature coefficient, and a third interior temperature coefficient representing temperature sensitivity to an average of the return temperature and the supply temperature. The power offset constant can be expressed in the unit of the measured input power function. The first condenser temperature coefficient can represent temperature sensitivity relating to the condenser temperature. The second interior temperature coefficient can represent temperature sensitivity to the return temperature. The third interior temperature coefficient can represent temperature sensitivity to the supply temperature. The first condenser temperature coefficient can be multiplied by the condenser temperature in the hyperplane. The second interior temperature coefficient can be multiplied by the return temperature in the hyperplane. The third interior temperature coefficient can be multiplied by the supply temperature in the hyperplane.
The foregoing and additional aspects and embodiments of the present invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments and/or aspects, which is made with reference to the drawings, a brief description of which is provided next.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
1.1 Vapor Compression Cycle Equipment
The examples as described herein will utilize a monitor for a residential “split system” air conditioner, although it should be understood that the present disclosure is not limited to this type system.
In a split-system air conditioner, an air handler unit 104 is typically located remotely from the compressor/condenser unit 102. The air handler unit 104 includes an enclosed chamber 114, through which air to be cooled is drawn or forced across an evaporator coil 116 (evaporator unit) via a motor-driven fan 118. In normal operation, high pressure refrigerant is fluidically coupled from the output of the condenser coil 108 to an expansion valve 120 via a liquid line 122. The high-pressure, sub-cooled refrigerant in the liquid line 122 is forced through the expansion valve 120 and appears at the output of expansion valve 120 as a low pressure, atomized liquid, where it is coupled to the evaporator coil 116. The low pressure, atomized liquid refrigerant absorbs heat from the evaporator coil 116, where it quickly evaporates into a super-heated vapor, cooling the air passing over the evaporator coil 116 in the process. The super-heated refrigerant is fluidically returned to the inlet of the motor-driven compressor 106 via a suction line 124.
The vapor compression cycle can be used to heat as well as to cool. For example, the split system described above can be adapted for heating rather than air conditioning in a configuration commonly known as a “heat pump.” In the heat pump configuration a set of valves is typically employed to re-route the refrigerant flow such that the high pressure refrigerant vapor is condensed in coil 116, and the low pressure liquid refrigerant is evaporated in coil 108. Air is cooled as it flows across coil 108, and heated as it flows across coil 116. It is common in the HVAC industry for AC (air conditioning) systems to be configurable for either cooling or heating. It is also common in the HVAC industry to refer to coil 108 in such systems as the condenser coil (or simply condenser), and coil 116 in such systems as the evaporator coil (or simply evaporator), regardless of their function in the vapor compression cycle. Similarly, the compressor/condenser unit 102 in such systems is referred to as the compressor/condenser unit, and the unit 104 in such systems is referred to as the evaporator unit.
The installer of the split system air conditioner conventionally connects two air duct subsystems to air handler unit 104. A return duct 134, shown in
Because the air handler unit 104 in a split system is typically located remote from the compressor condenser unit 102, the two units can be fed via separate branch circuits in an electrical distribution system. The external compressor/condenser power supply in a residential VCC-based air conditioner or heat pump is typically a 3-wire, single phase, mid-point neutral 220 Volt system, and is identified by the three input wires L1c, L2c and Nc. Similarly, the air handler unit 104 is often also supplied by a 3-wire, single phase, mid-point neutral 220 Volt power system, and its supply is designated by the inputs L1a, L2a and Na, where L1 and L2 refer to lines 1 and 2, and N refers to neutral.
The compressor/condenser unit 102 and the air handler unit 104 are generally built by a manufacturer as individual units, not intended to be modified.
A typical residential VCC-based heat pumping system, such as an air conditioner or common heat pump, operates under the well understood principle of “bang-bang” control. Referring to
In a typical residential system, the user of the system generally sets only one temperature value (e.g., a thermostat setpoint temperature) on the thermostat device 130, denoted TSP, with upper and lower operating temperatures TU and TL derived from this single value according to a rule that can be established mechanically or electronically. An example of such a rule can be to turn the air conditioning system 100 on when the sensed temperature of the ambient in the vicinity of the thermostat 130 rises 1° F. above the thermostat setpoint temperature, TSP, set by the user and turn the air conditioning system 100 off when the sensed temperature in the vicinity of the thermostat 130 drops 1° F. below TSP. In this manner, the air conditioning system 100 can regulate the temperature to within approximately +/−1° F. of the thermostat setpoint temperature value set by the user.
Starting at time t0, with the air conditioning system in the ON state, and the managed thermal space temperature at a value greater than TL as shown in the lower timing diagram of
As described below, the thermostat setpoint temperature can be used to calculate an expected input power consumed by the compressor/condenser unit 102 as described in more detail below in conjunction with an outdoor temperature, such as an intake temperature from an intake area of the compressor/condenser unit 102.
Within the interval comprising the mth cooling cycle, two sub-cycles are defined. The interval from t1 to t2, over which the air conditioner is OFF is referred to as the mth heat pumping idle sub-cycle, or HPIS(m) as indicated. The interval within the mth cooling cycle over which the air conditioner is ON (the interval between t2 and t3 in
Having described the basic components and operation of a typical air conditioning system 100, attention is now turned to an experimentally determined relation between compressor input power and air temperatures in the vicinity of the compressor/condenser unit 102 (
The example refers to type J thermocouples as the temperature sensors, but other temperature measuring methods such as temperature dependent resistive devices, commonly called thermistors or RTD devices can alternately be employed, and there are also fully integrated temperature measuring devices in the form of integrated circuits that can be employed.
The electrical components in the compressor/condenser unit 102 conventionally include a compressor that drives the vapor compression cycle and a fan, which causes air to pass over the condenser coil. The power consumed by the fan can be assumed to be nearly constant in a normally operating system.
The power monitoring device 308 can also provide MODBUS connection capability, and can be connected as a separate MODBUS slave device in the air conditioning monitoring network 410.
Central to the air conditioning monitoring (MODBUS) network 410 employed in gathering experimental data is a Supervisory Control and Data Acquisition (SCADA) system, such as the SCADA system 408, FACTORYCAST HMI™, manufactured by Schneider Electric. The SCADA system 408 is communicatively coupled to the power monitoring device 308 and to the thermocouple modules 402, 404 as the master device of the MODBUS network 410.
The SCADA system 408 receives and stores in a conventional electronic memory device digitized samples of the temperatures and power-related parameters described above at a rate of 0.5 Hz in the exemplary system and assembles the data collected into records of data. Each record of data represents the data obtained at a particular sample time from an air conditioning system, and the SCADA system 408 generates a time stamp using an internal time base that is also attached to the record. On an hourly basis or other time interval period, the data records can be retrieved from the SCADA system 408 via the Internet 412 using a standard FTP protocol by an external computer (not shown). The records can be stored as files on an electronic memory device on a network 406 for use in in manners to be discussed later.
In a nominally operating VCC-based heat pumping system, the relation between compressor inlet power and the measured temperatures is well described by a hyperplane. Let the variable Tc be the compressor inlet air temperature as inferred by the thermocouple device 302 TC-C, Tr the return inlet air temperature inferred by the thermocouple device 304 TC-R, and Ts the supply duct air temperature inferred by the thermocouple device 306 TC-S, all temperature values assumed herein to be expressed in degrees Celsius. With these defined the hyperplane relation discovered is of the form:
Pe(Tc,Tr,Ts)=Pc0+kcTc+krTr+ksTs (1)
where,
The relation above (Equation 1) is herein referred herein to as the CIPP relation, an acronym meaning Compressor Input Power Predictor relation, or the expected input power function according to an aspect of the present disclosure. The expected input power function is compared with the measured input power function to determine how closely the measured quantity (e.g., real or apparent power or RMS current) of the measured input power function tracks the corresponding expected quantity (e.g., real or apparent power or RMS current) of the expected input power function. The example refers to real power as this measured input power function, but apparent power, average power, and RMS current can alternately be used. It is also be noted that one can assume that line voltage is a constant, nominal value and can be multiplied by measured RMS current to derive an approximation to Volt-Amperes. Henceforth when the term CIPP is used, it will be understood that it refers to the relation described by Equation (1) and its purpose is to track the measured input power function under nominal conditions.
Although the CIPP relation described by Equation (1) above includes the intake temperature and the supply and return temperatures, the expected input power of the compressor can be calculated from an expected input power function that includes a temperature exterior to the managed thermal space only, such as an outdoor temperature. This exterior temperature can be an intake temperature from an intake area of a compressor/condenser unit 102. In the case of an air conditioning or heat pump system, the exterior temperature corresponds to a temperature indicative of outdoor environment. This means that the exterior temperature can be measured, for example, in an attic of a residence, even though the compressor unit is located on the ground outside the residence. A measure of the attic temperature can approximate the temperature of the outdoor environment. In the case of a refrigeration system, the exterior temperature corresponds to a temperature exterior to the closed managed thermal space (i.e., outside of a refrigerator).
The expected input power function can also be calculated based on one outside temperature measurement and one or more indoor or interior temperature values. The indoor or interior temperature can correspond to an assumed value based on a thermostat setpoint temperature or to an ambient temperature measurement of an indoor environment on which the vapor compression system operates, such as a return temperature measurement from an intake area of an air handler unit 104 or a supply temperature measurement from a supply output area of the air handler unit 104 or both. Stated generally, an interior temperature can be indicative of an indoor temperature of an indoor environment (such as inside a building) or a temperature of a closed managed thermal space within an indoor environment (such as inside a refrigerator unit). A closed managed thermal space is a closed system inside a room or indoor environment. The indoor environment itself in which the closed system is housed is not considered to be a closed managed thermal space. Indoor environment is thus the broader concept, encompassing an entire building or a room inside a building, whereas a closed managed thermal space refers to a closed system within an indoor environment, such as a refrigerator unit when the vapor compression system is a refrigeration system. The term indoor refers to any space considered to be indoor as ordinary people understand that term. The term interior can also refer to such spaces and, generally, to any closed space indoors, such as inside a closed managed thermal system.
In short, the expected input power function described herein can be calculated based on one outdoor temperature measurement only or in combination with one or more indoor or interior temperature values, measured or assumed. The expected input power function can be independent of any pressure measurement relating to the compressor/condenser unit 102 or the air handler unit 104. In other words, no pressure measurements are necessary, though not precluded, to estimate the power consumed by the compressor/condenser unit 102. The outdoor and interior temperatures can be of a gas or a liquid, and the expected input power functions disclosed herein can be used in any vapor compression system such as an air conditioner system, a heat pump system, a chiller, or a refrigeration system.
The examples provided below assume three measured temperature inputs into the hyperplane, but the present disclosure contemplates using a single outdoor temperature measurement or an outdoor or external ambient temperature measurement and one or more interior temperature values. External refers to an area or space external to the equipment comprising the vapor compression system. While external typically will refer to an outdoor environment, it can also refer to an indoor environment that is external to the managed thermal space. For example, in the case of a refrigeration system, the external ambient temperature can refer to any temperature outside of a refrigerator unit being monitored, and this temperature will typically correspond to an ambient indoor temperature of the space or room in which the refrigerator unit is installed. It should be understood that the condenser unit (e.g., condenser coil 108) is exterior to the managed thermal space.
The upper diagram of
For the system from which the plots of
Details on how these constants can be discovered from an analysis of the data described above will be explained below. Using these values, the CIPP relation produces the predicted results shown in the lower graph of
When comparing measured power against estimated power, the “normalized residual” can be calculated, defined by:
where Pc(n) is the measured power on the nth elementary process cycle and Pe(n) is that predicted by Equation (1).
Regarding the transition from the ON_NS region to the ON_ST region, it is consistently observed that a VCC based system must operate for a short period of time after the compressor starts at the beginning of an HPAS for refrigerant to properly distribute within the VCC system, during which time the power computed using the CIPP relation canot be considered a valid representation of that expected of the system. This is the ON_NS region 604 described above. It is not visually clear from the data in plot 600 exactly where the ON_NS region 604 ends and region ON_ST 606 begins. A method to define and determine this transition point will be discussed later.
High-efficiency residential air conditioners are typically equipped with a thermostatic expansion valve (TXV), which is intended to maintain a constant value of superheat. In a manner similar to
The CIPP relation is not a sensitive function of the temperature set-point of the system, provided the compressor speed and compressor fan speed remain approximately constant, which are reasonable assumptions in a properly operating VCC-based heat pumping device utilizing single speed fans and compressor. Once the appropriate CIPP coefficient values are determined, it does not matter at what temperature the thermostat 130 is set—only the measured temperatures and power are important.
The CIPP relation is also very stable over time, provided that the air conditioner refrigerant charge mass remains constant and the system 100, 1100 (
One can purposely use the air temperature in close proximity to the condenser coil by attaching a temperature sensing device near the condenser coil in such a manner that the sensor does not make contact with the condenser coil but at a sufficient distance to measure the temperature of the air entering the condenser coil. The CIPP relation, learned using this approach, implicitly assumes a consistent temperature relation between the air entering the condenser and the condenser surface temperature, established by a relatively constant airflow through the condenser using a single speed fan. Conditions that cause reduced airflow through the condenser cause the condenser to operate at a higher temperature than it would under normal conditions for given condenser ambient air temperature, Tc. This subsequently causes the compressor to use more power than predicted. An increase in measured power over that predicted by the CIPP relation indicates a reduction of heat transfer through the condenser which can be detected and reported. Two anomalous conditions that can cause a reduced heat transfer include a malfunctioning fan system or a fouled condenser. Either anomalous condition causes reduced system efficiency, and an increase in compressor power over that expected under normal conditions. One can readily diagnose these anomalous conditions visually or audibly once one is alerted to the possibility of their existence by the CIPP relation.
Another beneficial characteristic of the CIPP relation is the speed at which it becomes usable as a predictor of the state of refrigerant charge or reduced condenser heat transfer. Unlike many relations within an HVAC system that require the VCC system to thermally stabilize for long periods before the relation becomes clear, it has been observed in commercially available residential air conditioning equipment that the CIPP relation can be used reliably after only about 4 to 6 minutes of operation. Furthermore, once the system is operating in the ON_ST region of
Having an established CIPP relation in the general form of Equation (1) is beneficial for at least two purposes. First, it is recognized that once the appropriate refrigerant level is established in a system using conventional means of charging, and the coefficients of the CIPP relation are known, the relation can be used to predict the expected compressor input power for subsequent operation using the temperature values computed from sensory inputs responsive to the appropriate temperatures. If the expected compressor input power as computed by the CIPP relation is greater than the actual measured power of the compressor, a likely cause of this deviation is refrigerant loss, an anomalous condition that can be reported and corrected by means of system maintenance. Similarly, a fouled condenser condition can be detected as the anomalous condition in which the predicted compressor power is less than that measured. When the expected input power deviates from the measured input power by more than a predetermined tolerance, such as the tolerances provided below, an indication that an anomalous condition exists can be stored in a conventional electronic memory device. The indication can be displayed on a conventional display means, such as a video display, and optionally communicated to a device remote from the VCC system 100, 1100, such as an email system, paging or text messaging system, or a cellular phone, to name a few examples.
As a second benefit, once the CIPP relation is properly learned, it can be used as an aid in refrigerant charging during system maintenance. In a typical residential air conditioning system employing a thermostatic expansion valve, one typically employed method of establishing refrigerant charge level includes the iterative steps of:
An exemplary waiting period for the VCC system 100, 1100 to thermally stabilize is on the order of 15 minutes, from which one can estimate that each cycle of the iteration above to be on the order of 15 to 20 minutes. There can be a temptation on the part of the service technician to shorten the process, leaving the system sub-optimally charged. However, once the system has been properly charged and the CIPP relation established, on subsequent maintenance calls one can charge the system until the power predicted by the CIPP relation again matches the actual measured power. Using the CIPP relation, the power level can stabilize within 4-6 minutes, shortening the process significantly. The technician is much more likely to optimize the VCC system 100 if it can be done in a few minutes.
Monitoring and predicting compressor power using a CIPP relation is a valuable diagnostic and repair tool for refrigerant level monitoring and charging. Such a tool would provide benefits in energy efficiency, building comfort, and diagnostic and repair cost by indicating a loss of refrigerant in a timely manner before building comfort is sacrificed and providing a simple way of re-establishing refrigerant levels once the leakage is detected and repaired.
1.2 Hardware Description
The following description is offered as an example of an implementation of the present disclosure. Other variations on the implementations offered herein can be implemented without compromising the spirit and essence of the present disclosure.
The VCC-based air conditioning system 100 of
Included is a monitoring device 308 for monitoring the compressor or compressor/condenser power shown in
According to aspects of the present disclosure, three thermometer or temperature-sensing arrangements are included to monitor the air temperature at strategic places entering and leaving the production Compressor/Condenser 102 and Air Handler 104. The temperature sensor or thermometer module 302, labeled “Tc” in
Additionally, two thermometer modules 304, 306 are positioned in the installed ductwork to provide a signal responsive to the return temperature (Tr) and the supply temperature (Ts) in the respective return and supply ducts, 134 and 136, respectively. Note again that these ducts 134, 136 are part of the installation of the system 1100 and do not intrude upon the manufactured air handler unit 104. In an implementation, the thermometer modules 304, 306 are type-J thermocouples, combined with a DataQ Model 924-MB mV/Thermocouple device, which communicates data to the CIPP processor 1102 via a communication link in a manner identical to that described above with respect to the thermometer module 302.
It should be readily apparent that a manufactured heat pump, which can operate in both heating and cooling modes can be instrumented in the same manner and operated in either the heating or cooling mode, with different CIPP relations established for each mode. In an implementation that is totally non-intrusive to the originally manufactured equipment of the VCC-based system 100, the input power to the compressor is assumed to be represented by the total input power to the condenser unit 102. It is understood that in most residential split system heat-pump or air conditioners the condenser unit 102 input power also includes the power furnished to a condenser fan 110 integral to the condenser unit 102. This additional component of power can be assumed to be constant, if the fan 110 is operating within specifications. From the CIPP relation perspective, this constant fan power appears as an increase in the term Pc0 in Equation (1) over the value that would be obtained if the compressor power were completely isolated.
1.3 Software (Algorithm) Functional Description
1.3.1 Overview
Table 1 set forth below lists exemplary machine constants used by the software 1200 of an aspect of the present disclosure. The purpose of each machine constant is defined and described in the narrative that follows.
The Executive task module 1202 initiates an elementary process cycle (EPC). The CIPP Processor 1102 of the VCC-based system 1100 operates as a sampled data system at a rate fsp, where fsp is is a machine constant defined by commissioning. Timing signals are created at intervals τsp, where τsp and fsp are are related by:
The elementary process cycle, or EPC, is initiated by the Executive task module 1202 via a software semaphore to the rest of the software components, blocks or modules of the CIPP Processor 1102 at regular intervals.
As a matter of notation, if one defines a reference time t=0, at which the zeroth elementary processing cycle begins, the time at which the nth elementary processing cycle begins is related to the sampling frequency by:
The index “n” refers to the elementary process cycle starting at the time t(n) given by the Equation (12), and the notion of actual time will be dropped from the remainder of this discussion. Knowing the value of “n” and the sample period, one can readily create the time at which an elementary process cycle occurred.
The software 1200 also includes a Background Task module 1204, which provides data acquisition and signal processing for the system 1100, producing a data record as part of each EPC. The data record produced by the Background Task module 1204 is required by the HPAS Monitor Task module 1206 to be described next. As such, the Background Task module 1204 is the first task executed at the start of each elementary process cycle. The operation of the Background Task module 1204 is discussed in more detail below.
The software 1200 includes an HPAS Monitor Task module 1206, which accepts the data records produced by the Background Task module 1204 and generates summary statistics for a heat pumping active subcycle or HPAS. The outputs of the HPAS Monitor task module 1206 include an HPAS Data Record, comprising a status word and two structures, all of which will be discussed in detail.
Relative to the uniform sampling rate of the CIPP Processor 1102, the start of a heat pumping active sub-cycle (HPAS), and the length of any individual heat pumping cycle (HPC) can both be considered as random variables that occur asynchronously. From the perspective of nomenclature, it is helpful in what follows to label and count heat pumping cycles and active and inactive sub-cycles associated therewith. Accordingly, the index “m” is used in what follows to indicate the mth heat pumping cycle, with associated idle and active sub-cycles beginning after the reference time t=0.
The software 1200 can include an optional EPC data logging task module 1208, which causes the data records generated by the Background Task module 1204 to be logged to an external database (not shown), for example, a set of data files on a personal computer. This data can be used for analysis purposes, or can be discarded.
The software 1200 includes an HPC data logging task module 1210, which causes the summary statistics generated by the HPAS monitor task module 1206 to be logged to an external database. This data can be used, for example, to compute energy consumption.
The software 1200 includes an Alarm Logic task module 1212, which accepts data records from the HPAS Monitor task module 1206 and applies pre-programmed logic to the data and generates alarms when appropriate, indicating the need for equipment maintenance.
1.3.2 Common Exemplary Digital Signal Processing Functions
The signal-processing aspects of the present disclosure utilize various elements, which are defined next. The present disclosure can use three processing elements, a first-in/first-out buffer or FIFO, a tapped delay version of a FIFO, called a TD_FIFO herein, and a finite impulse response filter or FIR Filter.
ad(n)=a(n−N),n≧N (13)
These FIFO memory arrangements or sequence “delay lines” are referred to throughout the present disclosure.
There are a number of ways in which the function described above can be implemented, such as creating a FIFO delay line in electronic hardware. Those of ordinary skill in the art will appreciate that a FIFO memory arrangement can be implemented in any number of ways.
Another, closely related processing element that can be used in aspects of the disclosure is referred to as a tapped-delay FIFO memory arrangement, or TD_FIFO 1400.
The present disclosure can also make use of conventional finite impulse response (FIR) filters.
In a special case, if each of the cn is assigned the value:
the result is:
which is immediately recognized as the mean of the entries in the TD_FIFO 1400. Such an arrangement is often called a boxcar filter by those of ordinary skill in the art to which filters pertain, and this arrangement will be referred to as such herein.
1.3.3 Internal State Variables COMP(n), SS(n) and FS(n)
According to an example of the present disclosure, three state variable sequences can be defined and maintained by the monitoring system 1100. The CIPP processor 1102 maintains a state variable COMP(n), indicating whether the compressor 106 is running or not within the present EPC. COMP(n) takes on enumerated values in the set {TRUE, FALSE}, with “TRUE” indicating the compressor 106 is presently running and “FALSE” indicating the compressor 106 is not running Details of how the CIPP processor 1102 sets the value COMP(n) will be described below. The CIPP processor 1102 also maintains a state variable SS(n), which takes on enumerated values in the set {TRUE, FALSE}, with TRUE indicating that the CIPP processor 1102 has declared that the necessary conditions are satisfied for the system 1100 to be in the ON_ST state as shown in
1.4 Task Descriptions
The following provides detailed descriptions of the tasks described above.
1.4.1 Executive Task
The Executive Task module 1202 includes those functions required to manage and modify the machine constants and to generate the timing signals required for the CIPP processor 1102 to operate as a sampled data system. It is the first and only task operational when the CIPP Processor 1102 is turned on and is responsible for initialization of variables and other memory structures.
From a macroscopic viewpoint, the CIPP processor 1102 can operate in two major system States: Halt or Run. In an implementation, a physical switch (not shown) can be incorporated in the system 1100 by which a user can select the state of the CIPP Processor 1102. The operation of the CIPP Processor 1102 in the Halt and Run states is described next.
1.4.1.1 Halt State
The Halt state is used to commission the machine constants used by CIPP Processor 1102. The functions used to gather data, generate alarms, predict system power, and the like are disabled in the Halt state. In an implementation, the machine constants software provides the basic operational parametric values required of the various software elements of CIPP Processor 1102. Table 1 provides a list of exemplary machine constants that can be used in the software elements of CIPP Processor 1102. The meaning and use of each machine constant will become evident as the operation of the CIPP Processor 1102 in the Run mode is described. The term “Cycles” found in Table 1 is understood to mean the number of elementary process cycles (EPC).
1.4.1.2 Run State
In the Run state, the CIPP Processor 1102 operates in one of three system Modes, specified by the Mode machine constant listed in Table 1. The system mode is managed by a commissioning tool with the CIPP Processor 1102 in the Halt state. The Mode machine constant takes on one of three enumerated values in the set {Mode0, Mode1, Mode2}. These values define a hierarchy of system operation, from minimal functionality in Mode° to full functionality in Mode2 as described below.
With CIPP Processor 1102 in the Run state, the lowest functionality operating mode is Mode0. In Mode0, the CIPP Processor 1102 can only measure the temperatures Tc, Ts and Tr and the compressor/condenser unit 102 input power Pc. It is not capable of determining the predicted compressor power, or even to determine whether the compressor is on or off without additional information. This mode represents the “out of the box” mode of the machine.
The CIPP Processor 1102 can be enabled to operate in Mode1 after supplying the system with the values of two machine constant parameters: a power threshold value, Pth; and a holdoff delay SSMode1_Delay, described in more detail below. These values are set by commissioning with the CIPP Processor 1102 in the Halt state.
In Mode1, the CIPP Processor 1102 can determine when the compressor/condenser 102 is ON or OFF using the machine constant power threshold Pth, and the HPAS Monitor Task module 1206 can utilize the holdoff delay machine constant SSMode1_Delay to generate statistical information useful for determining the values of the CIPP coefficients Pc0, kc, kr and ks.
The CIPP Processor 1102 can be enabled to operate in Mode2 by satisfying the conditions required to operate in Mode1 and setting the values of the CIPP coefficient machine constants Pc0, kc, kr and ks by commissioning with the CIPP Processor 1102 in the Halt state. Mode2 is the normal, monitoring mode of the CIPP Processor 1102. When in Mode2, the CIPP processor 1102 and the associated software described herein can determine whether the compressor 106 is ON or OFF, and can also perform digital signal processing described below to determine when the HPAS is in the ON_ST state described in
When the CIPP Processor 1102 is placed in the Run state, the Executive Task module 1202 initializes the values of all the machine constants. Each machine constant can be provided with a hard-coded default value, and a stored, commissioned value, which a technician or other skilled operator can modify by commissioning with the CIPP Processor 1102 in the Halt state. When possible, the CIPP Processor 1102 utilizes the commissioned value of the machine constants, using the hard-coded default values when no commissioned values are present. Having initialized the machine constants, the Executive task module 1202 initializes all data structures except the machine constants in the CIPP Processor 1102, and computes the period of the elementary process cycle, utilizing the sampling rate machine constant value of fsp. It then sets up the timing mechanism by which an EPC semaphore is created, indicating the beginning of each elementary process cycle. Once the timing mechanism has been initialized, the Executive Task module 1202 generates the semaphore at the appropriate times.
1.4.2 Background Task
Two logical tests are made in decision block 1610. A test is made on the result of processing in block 1612 to determine whether the present value of COMP(n) is TRUE, meaning that the compressor 106 is declared to be “ON” by the CIPP processor 1102. A test is also made to determine if the CIPP Processor 1102 is operating in Mode2, meaning valid CIPP coefficients have been provided the CIPP Processor 1102. If the answer to either test is “No,” the CIPP processor 1102 sets the present values of the sequences Pe(n) and r(n) defined above to zero (1614), and proceeds to process block 1616. If in decision block 1610, COMP(n) is TRUE and valid CIPP coefficients have been defined, indicated by operation in Mode2, control proceeds to the process block 1618, where the CIPP processor 1102 computes the values of Pe(n) and r(n) using Equations (1) and (6) above, and control is passed to the process block 1616.
In process block 1616, the present value of each of the sequences in the Sequence column of Table 2 set forth below is stored in an individual TD_FIFO 1400, dedicated to that variable. The CIPP processor 1102 maintains boxcar filters 1500 for each of the sequencese, using the values in the TD_FIFO's 1400 already updated. The resulting associated sequences are shown in the “Resulting Filtered Sequence” column of Table 2 below. In the process block 1620, the boxcar filter values are updated utilizing the results of process block 1616 as inputs. Equation (16) forms the basis for computation of each of these filtered sequences.
Control proceeds to the process block 1622 where the CIPP processor 1102 executes logic to determine whether the TD_FIFOs maintained by the CIPP Processor 1102 are full of valid data taken from a present HPAS. The result of this logic is the state variable FS(n), which takes on values in the enumerated set {FALSE, TRUE}, where a logical value “TRUE” indicates that all TD_FIFOs contain valid data from a present HPAS and FALSE means they do not. The logic executed to determine the value of FS(n) for an elementary process cycle is discussed below.
Control passes to process block 1624, where the present value of steady state sequence SS(n) is updated, with details of this process to be discussed below.
The CIPP processor 1102 maintains time-delayed, individual FIFO delay lines of length Nd as described above, for each of the boxcar filtered sequences in Table 2, and for SS(n), in process block 1626. The resulting, time-delayed sequence of SS(n) is referred to as SSd(n), with Nd being a machine constant determined by commissioning. The time-delayed versions of each of the boxcar filtered values are given in Table 2 under the heading “Delayed Filtered Sequence.” The purpose of these buffers and their length is discussed below. Following the update of these FIFO delay lines in block 1626, the Background Task ends (1628).
An exemplary method in which the CIPP processor 1102, operating in Mode1 or Mode2 determines the value of the state variable COMP(n), indicating whether the compressor is in the “ON” or “OFF” state will be described next. This is designated as process block 1612 in
Upon entry to the compressor ON/OFF detection process at (1702), the newest value of the condenser power sequence, Pc(n), is immediately compared (1704) against the predetermined threshold value, Pth described above. As a result of the comparison, the intermediate variable X is assigned the value TRUE (1706) if the present power measurement Pc(n) is greater than or equal to Pth and the value FALSE (1706) if the present power measurement is less than Pth.
The value of the local variable X is compared against the previous compressor state value COMP(n−1) (1710), the value of COMP(n) generated in the previous elementary processing cycle. If X has the same value as COMP(n−1), the debounce counter DBC is assigned the machine constant value DBCref (1712), the new value of COMP(n) is assigned the previous value COMP(n−1) (1714), and this cycle is complete and control exits (1716). If X and COMP(n−1) are not equal as a result of the comparison in block 1710, it may be time to change the value of the internal compressor state COMP(n). In this case, the debounce counter, COMP_DBC is decremented by one count (1718). The resulting value of COMP_DBC is compared to zero (1720). If the debounce count is not yet zero or negative, it is not yet time to change the declared state of the system, and COMP(n) is assigned the previous value COMP(n−1) (1714). Following this assignment, the state manager process ends by exiting (1716) as shown, and the COMP_DBC variable retains the newly decremented value.
If, in decision block 1720, the value of the debounce counter COMP_DBC is detected to be less than or equal to zero, it is time to change the internal system level declaration of the compressor state, COMP(n). COMP(n) is assigned the present value of the local state variable X (1722). The debounce counter COMP_DBC is assigned the default value DBCref (1724), and the algorithm 1700 exits (1716).
As should be clear from the description above, for the compressor ON/OFF detection process to declare a transition from the ON (TRUE) state to the OFF (FALSE) state, the actual power to the compressor must have dropped below the threshold value Pth for DBCref consecutive elementary processing cycles. Assuming the value of Pth has been properly selected, this means that power must have been physically removed from the compressor/condenser unit 102 for at least a number of consecutive elementary processing cycles corresponding to DBCref. A method to select an appropriate value of Pth will be discussed later.
1.4.3 FIFO State Variable FS(n)
Next, the processing required to update the FS state variable in block 1622 of
Referring now to
In process block 1804, the present value of FSCount is increased by 1. This count indicates the number of elementary process cycles since the COMP(n) variable was first set TRUE, following a previous FALSE value. After incrementing FSCount, control passes to decision block 1810.
In decision block 1810, the present value of FSCount is compared against the threshold value, Ntd. In Mode0, the routine will never achieve this value, FSCount having been set to zero in process block 1808. If FSCount is greater than or equal to Ntd, all TD_FIFOs are full of entries for which the corresponding compressor state COMP(n) is TRUE.
In this case, FSCount is set to the value Ntd-1 in process block 1812. This is done for practical purposes to ensure that FSCount does not get too large. In a computer with a fixed number of bits representing an integer, it is possible to overflow the storage element storing the integer, with undesirable results. Following the process block 1812, the value of FS(n) is declared TRUE meaning “full” in process block 1814, and the routine ends. If in block 1810, FSCount is not greater than or equal to N, the values in the TD_FIFOs do not represent Ntd consecutive entries for which COMP(n) was TRUE. In this case, FS(n) is assigned the value FALSE, meaning “not full” in process block 1816, and the routine ends.
1.4.4 Computation of CIPP Steady State Variable SS(n)
The state variable SS(n) keeps track of whether the VCC system is operating in the steady state, as defined by criteria described above. The means to compute the variable SS(n) depend on the operating mode of the monitoring system.
In Mode0, the ON/OFF threshold Pth of the compressor is not yet fixed, hence the compressor ON/OFF state variable COMP(n) cannot reliably be determined. In this case the variable SS(n) is always assigned the value FALSE. In Mode1 the ON/OFF threshold Pth of the compressor has been set at commissioning, but the coefficients of the CIPP relation have not yet been fixed. The steady state variable SS(n) is initialized at FALSE, then is set to TRUE once a specified number of elementary process cycles have passed after the FIFO buffers first contain a full set of data from the present HPAS.
In Mode2, where the compressor/condenser ON/OFF threshold value and the CIPP coefficients are provided, the steady state variable SS(n) is computed based on the residual between the measured and expected or predicted compressor power.
Once the TD_FIFO is declared “full” of data from the present HPAS by virtue of the FIFO state variable FS(n) set to TRUE, the slope filter algorithm 2100 fits an affine relation of the form:
xr(k)=m(n)×k+b(n),k=1, . . . ,N (17)
where k is an index indicating the actual position of the data in the TD_FIFO, m(n) is the computed slope of the affine relation for this elementary process cycle and b(n) is the corresponding y-intercept. Computation of m(n) and b(n) is performed in a Regression Constant Generator 2104 functional block, the outputs of which are the slope sequence m(n) and y-intercept sequence b(n). The slope, m(n), is one of the outputs of the slope filter function 2100.
The computed values m(n) and b(n) for this elementary cycle feed the Regression Sequence Generator 2108, which computes the N values of the regression sequence xr(k), k=1, . . . , N. as outputs, with each xr(k) given by Equation (17). This finite sequence, along with the finite sequence x(k) from TD_FIFO 2102 serve as inputs to a functional block Standard Deviation (STD) Generator 2106, which computes the standard deviation of the difference or deviation between the finite sequence x(k) from TD_FIFO 2102 and the regression sequence xr(k) generated by regression sequence generator 2108. The output of the STD Generator 2106 is this standard deviation, STD(n), which is the second output of slope filter 2100.
Referring to Regression Constant Generator 2104, the method of slope and y-intercept of determination of the parameters m and b can be derived using any conventional regression analysis technique. For instance, the slope m(n) and y-intercept, b(n) can be computed on each elementary processing cycle using the following formulae:
Next, the internal signal processing performed by the STD Generator 2106 is discussed. Define the kth deviation d(k), between the stored residuals in TD_FIFO and represented by the x(k) and the regression sequence xr(k) given by affine Equation (17) and computed by the Regression Sequence Generator 2108 by:
d(k)=x(k)−xr(k),k=1, . . . ,N (20)
In other words, d(k) is the difference or deviation of the kth residual stored in the FIFO from the value of the affine Equation (17) evaluated at k. Define in the usual way, the mean and variance of the resulting distribution d(k) by:
and the standard deviation STD(n) by the square root of the variance:
STD(n)=√{square root over (σd2)} (23)
Referring to
Assuming normal operation of the VCC-based heat pumping device, when the compressor 106 has been operating long enough for the refrigerant to be properly distributed and the estimated power Pe representative of expected compressor power, the slope, m(n) computed for Equation (17) by the Regression Constant Generator 2104 will be zero, or nearly so. Mathematically, this condition indicates that the actual, measured compressor power is tracking the predicted power, deviating by a constant offset, perhaps zero in the case where it is tracking optimally. To account for this in the Steady State Detect Logic 2200, the absolute value of m(n) is computed in function block 2204, resulting in the absolute value of m(n), designated by |m(n)|, which is subsequently presented as the input A to a threshold detection block 2206. The threshold detection block 2206 is a two-input function, with inputs labeled A and B. The output of the threshold detection function block 2206 takes on the value TRUE, when the value of input A is less than that of input B, and FALSE otherwise. The input B of the threshold detection block 2206 is the value of the commissioned machine constant Magmmax. The value of Magmmax is intended to be set very small, on the order of 0.05 or less, for example. When |m(n)| is less than Magmmax, the output of the threshold detection block 2206 is TRUE, indicating that the condition that the slope of the regression of the residuals is sufficiently close to zero for the system 1100 to be considered stable. The output of threshold detection block 2206 forms the second input of the logical conjunction 2202.
When the slope m(n) in Equation (17), and computed by Equation (18) is zero, it should be apparent that, with the exception of random noise, each of the values x(k) from TD_FIFO 2102 should be approximately the value b(n) computed by the Regression Constant Generator 2104, and each resulting d(k) computed by Equation (20) should therefore be nearly zero. In this example, the standard deviation STD(n) is indicative of the “noisiness” of the residual r(n) values in the TD_FIFO 2102, and should be very small if the data acquisition equipment is operating properly. A third test for a stable system 1100 is to compare the present value of STD(n), which is by definition non-negative, against a small, positive threshold value, provided by the machine constant STDmax. This comparison is made in a threshold detector 2208 in a manner identical to that described above with respect to the threshold detection function block 2206. If the present value of STD(n) is less than STDmax, the residuals in TD_FIFO 2102 can be assumed to be generated by a system with normal data acquisition capability. The output of the threshold detector 2208 forms the third input of logical conjunction 2202. Typical practical values for STDmax have been determined experimentally to be on the order of 0.05, or 5%.
To summarize, satisfaction of these three conditions in combination implies that the CIPP relation is “tracking” the compressor power changes, differing by, at most, an offset, and that the data in the TD_FIFO of residuals 2102 is not just random noise, but is tracking a physical process, notably the vapor compression cycle itself.
Finally, the purpose and methodology of generating time-delayed versions of SS(n) and the sequences in Table 2 is discussed. As should be clear from the discussion of the algorithm used to generate COMP(n) above, when the compressor ON/OFF detection process declares a transition from the ON state to the OFF state in Mode1 or Mode2, the actual power to the compressor 106 has been observed below the threshold value Pth for DBCref consecutive elementary processing cycles. This means that power must have been physically removed from the compressor/condenser unit 102 for at least a number of consecutive elementary processing cycles corresponding to DBCref. Because of the statistical nature of the steady-state detection process, at some point before the COMP(n) state variable is declared OFF, indicating the end of a heat pumping active cycle, SS(n) is likely to be declared UNSTABLE simply because power has been removed from the compressor/condenser unit 102, and not necessarily because the physical vapor compression equipment is behaving abnormally.
To compensate for this phenomenon, the sequence SS(n) is stored and delayed by Nd samples in a delay line FIFO, where Nd is a machine constant. Mathematically, the delayed sequence SSd(n) is related to SS(n) by:
SSd(n)=SS(n−Nd) (24)
By choosing an appropriate value Nd and using the delayed value, SSd(n) in subsequent calculations, the data at the end of the heat pumping active cycle can be ignored. An appropriate value of Nd is a value larger than the debounce count. Because modern electrical switching devices can remove power from a system in significantly less time than a typical elementary processing period of 2 seconds, a value Nd equal to DBCref+1 will suffice, and for a typical system, setting Nd equal to two times DBCref has been demonstrated to work without an appreciable loss of accuracy. To synchronize the boxcar filtered values in Table 2 with SSd(n), each boxcar filtered value can also be delayed in a separate FIFO delay line by the same Nd samples. This ensures that when comparisons are made to detect abnormalities, consistent sets of sequences are used, and that they represent data that was generated when the equipment was actually operating. An alternative to this approach is to simply store every boxcar filtered value in memory, resulting in large memory usage that is dependent upon the length of the heat pumping active subcycle. A fixed FIFO is a viable alternative in this case.
With the Background Task 1204 described per above, Table 3 summarizes the content of the data record produced by the Background Task module 1204 on each elementary process cycle.
1.5 HPAS State Machine Task
The HPAS state machine task manages the accumulation of data over a heat pumping active subcycle, maintaining two large data structures for use by other tasks to be described subsequently:
These two data structures are considered the outputs of the HPAS state machine task. Table 4 provides a definition of the summary accumulators stored by the HPAS task. These include the total number of elementary process cycles in the HPAS, as well as the total number of elementary process cycles in the STABLE (indicated by SSd(n)=TRUE) and NOT_STABLE (indicated by SSd(n)=FALSE) states. Also accumulated are the various boxcar filtered powers and measured temperatures, accumulated according to the value of SSd(n) for the particular cycle. By adding the STABLE and NOT_STABLE accumulated values, the total accumulated value for the HPAS can be computed.
Another set of accumulators, named ON_ST_ACC is also maintained by the HPAS task, shown in Table 5. Each of these accumulators is updated by adding the corresponding filtered value to the present value of the accumulator when the value of SSd(n) is TRUE, indicating operation in the ON_ST region. Each ON_ST_ACC accumulator is cleared (set to zero) when the value of SSd(n) is FALSE, and COMP(n) is TRUE, indicating operation in the ON_NS region. Recall that the ON_ST region of the HPAS is measured from the end of the present HPAS backward to the first occurrence for which SSd(n) takes the value FALSE per the algorithm described above for SS(n). Multiple transitions of SSd(n) may be possible within an HPAS, with the result that a single HPAS may have multiple regions of ON_NS and ON_ST operation per
A second variable, HPAS_ErrorCode, is maintained by the HPAS state machine 2300. This variable takes on values in the enumerated set {HPAS_Normal, HPAS_Timeout, HPAS_ShortCycle, HPAS_NotStable}. The meaning of these enumerated values is described below in connection with the state machine.
An external semaphore, Force_HPAS_Init, causes the HPAS state machine 2300 to immediately transition to state HPAS_Init 2302 shown in
In the HPAS_DataAcquisition state 2306, the HPAS state machine 2300 updates the accumulators structures HPAS_ACC and ON_ST_ACC on each elementary process cycle according to the descriptions above. The state machine 2300 remains in this state until the first of two events is satisfied. If the COMP(n) state variable has been assigned the value FALSE by the Background Task 1204, indicating the end of an HPAS, the HPAS state machine 2300 transitions to the HPAS_PostProcess state 2308, setting the HPAS_State variable in the process. If, before this transition can occur, the total number of accumulated cycles, stored in the accumulator HPAS_ACC.CyT exceeds the value of a machine constant MaxHPASCount, the HPAS is presumed to be taking too long, possibly indicating a problem with the system such as a stuck switch or a highly discharged compressor/condenser unit 102. In this case, the HPAS_ErrorCode is assigned the enumerated value HPAS_Timeout, indicating this condition and state machine 2300 transitions to the HPAS_Complete state 2310, setting the HPAS_State to HPAS_Complete in the process. The state machine 2300 remains in the HPAS_Complete state 2310 until a new Force_HPAS_Init semaphore is received.
In the HPAS_PostProcess state 2308, the task examines the conditions of the two accumulator structures to determine the value to assign to the HPAS_ErrorCode word before transition to the HPAS_Complete state 2310.
If the number of cycles in the HPAS is greater than or equal to Ntd in 2404, control passes to a decision block 2408, where the number of consecutive cycles for which SSd(n) is set TRUE at the end of the HPAS, stored in accumulator ON_ST_ACC.Cy is compared against a minimum value provided by the machine constant MinSC. If ON_ST_ACC.Cy is less than MinSC, control passes to process block 2410, where HPAS_ErrorCode is assigned the enumerated value HPAS_NotStable, indicating that the accumulated values of estimated power while the system was last in the ON_ST state in the just completed HPAS should not be considered valid. This can be indicative of problems with the heat pumping equipment, most notably of the overcharging condition described previously. The algorithm 2400 then exits at 2414. Assuming the value in ON_ST_ACC.Cy is greater than or equal to the minimum number of cycles provided by the machine constant MinSC in decision block 2408, HPAS_ErrorCode is assigned the value HPAS_Normal in the process block 2412, indicating that a “normal” HPAS has been completed. Following this assignment the algorithm exits at 2414.
Referring back to
Recall from
Within the context of the present disclosure, these two subcycles can now be formally defined. An HPIS is defined by a period for which the COMP(n) variable is declared OFF according to the algorithm disclosed herein. An HPAS is defined as the period over which the COMP(n) variable is declared ON according to the algorithm taught herein. A heat pumping cycle is defined as the concatenation in time of a HPIS, followed by the corresponding HPAS. It is useful to assign index m, m=1, 2, . . . to each HPC, and the corresponding HPIS and HPAS.
Referring back to
It should be clear from the definition above that the ON_ST accumulators of the HPAS task provide the statistical information regarding the last ON_ST region of the HPAS.
1.6 Alarm Logic Task Description
A building management system, such as the ANDOVER CONTINUUM™ system manufactured by Schneider Electric, is an example of a platform that can be configured to monitor compressor power and temperature, and can be programmed to implement the functions and methods described herein. Such systems are also capable of making logical comparisons between observed data and parametric limits, and have built-in functions to report anomalies in the form of alarms in many ways. In an implementation, the functions of CIPP processor 1102 can be performed by the Net Controller II processor of the ANDOVER CONTINUUM™ system. When CIPP Processor 1102 is implemented in such a system, the Net Controller II processor has access to the accumulator elements described above, as well as semaphores, state variables, and all variables generated by the Background Task module 1204, as they are internal values within the Net Controller II device.
The Alarm Logic task module 1212 analyzes the data produced by HPAS Monitor task module 1206 to generate appropriate alarms.
The records generated by the HPAS state machine 2300 and the Background Task module 1204 are available to the functions of AL_Process state 2504, which can examine the records and trigger alarms according to pre-programmed logic to be described subsequently. When this pre-programmed logic has been executed and any resulting alarms triggered, the logic issues the Force_HPAS_Init semaphore, and transitions back tothe AL_Idle state 2502.
As an example of logic that can be executed within AL_Process state 2504, suppose it would be desirable to generate an alarm indicating a possible low refrigerant level when the measured power becomes less than that predicted by some value. A 20% reduction in measured power over that expected has been experimentally determined to be a suitable value. In this example, the Net Controller II can be programmed to issue an alarm when the average residual over the last ON_ST region of an HPAS is less than a machine constant threshold value, rrfth specified by commissioning. Mathematically, the logical condition to be satisfied to generate such an alarm is:
where rrfth is the positive threshold machine constant value programmed by commissioning, and wherein the negative sign indicates that when the measured compressor power is reduced by a loss of refrigerant, the residual is negative in accordance with Equation (6). Detection of such a condition can be programmed in the AL_Process task, which can trigger a “Low Refrigerant” alarm utilizing the facilities for displaying and communicating alarms already available in the ANDOVER CONTINUUM™ system. These facilities can include display of the alarm condition on a data entry panel, issuing an e-mail to a designated recipient indicating the nature of the alarm, and paging a specified person.
Another alarm that may be of interest is that indicating a failed compressor fan. This is indicated by a significant increase in the power consumed by the compressor/condenser unit 102 over predicted by the CIPP relation. Because of this severe increase in power, it has been observed that the system 1100 never enters the ON_ST before the system shuts down, either due to a thermal overload in the compressor motor, or an overpressure switch trip in the compressor/condenser unit 102. In this example, a second threshold, rffth, (for fan failure threshold) is defined, and the average threshold over the ON_NS portion of the cycle is compared to this threshold, which is much greater than 1.0, generating an alarm when the condition
is satisfied.
1.7 EPC Logging Task
In an example implemented in a building management system, an external monitoring system can gather information generated by the CIPP Processor 1102 and store it in a database for archival and other uses. In an implementation, the boxcar filtered sequences Pcf(n), Tsf(n), Trf(n) and Tcf(n) are gathered by the external equipment and stored in a database where they can be examined by a user skilled in database management.
1.8 HPAS Logging Task
In Mode1 and Mode2, the structures generated by the HPAS state machine 2300 are uploaded by the external equipment, using receipt of the HPAS_State with the value HPAS_Complete, along with the corresponding HPAS_ErrorCode as the means to determine that new values of the accumulators are available. The values in the accumulators are useful in determining the CIPP coefficients in a manner described below, but can also be analyzed by external equipment to generate alarms and the like.
2 Description of the Learning Algorithms of the Present Disclosure
It is desirable to select appropriate values of the power threshold, Pth, which is the threshold by which CIPP processor 1102 used by the background process to declare the compressor/condenser unit 102 “ON” or “OFF” for each elementary process cycle. Similarly, to predict the compressor power using the hyperplane relation Equation (1) above, values for the machine constants Pc0, kc, kr and ks are needed. The following describes how these parametric values can be determined according to an example.
2.1 Determining the Power Threshold Machine Constant Pth
In an example, the nominal line voltage and rated full-load current for the compressor/condenser unit 102 are generally provided on the compressor/condenser unit 102 nameplate. From these values a threshold value, Pth, can be derived according to a pre-determined rule, with Pth a defined machine constant. For instance, in one commercially available, single-speed heat pump compressor/condenser unit designed to operate at a nominal 220 VAC, the rated full-load current drawn by the heat pump compressor/condenser unit is 13 Amperes. Given that the power consumed by the fan blowing ambient air over the condenser coil is typically significantly less than this power (measured to be approximately 200 Watts in the specific example), and that a residential heat pump compressor is power-factor compensated to achieve nominal unity power factor, arbitrarily setting a threshold at 25% of the rated power gives a threshold value of
Pth=25%×220 Volts×13 Amperes=715 Watts, (27)
as a nominal threshold value that can be used as an indicator of whether the compressor is operating or not. The user or operator of the CIPP Processor 1102 can readily make this calculation and enter the value via commissioning.
2.2 Determining the CIPP Coefficients
Data can be acquired by external equipment from the CIPP Processor 1102 operating in Mode1 utilizing the HPC data logging capability of the system to determine the CIPP coefficients in a manual operation to be described now. It is assumed that the heat pumping equipment has been properly maintained and has been operating normally during a learning period, during which the equipment is operating in Mode1 or Mode2. A typical learning period in the summer in the southeast United States is about two to three weeks, for example, with a minimum of 100 heat pumping cycles detected.
Operating in Mode1, each time an HPAS completes, the accumulated values of Pc, Tc, Tr and Ts are provided via the ON_ST_ACC structure for the interval assumed to be representative of the ON_ST portion of the cycle, and defined by the commissioned value SSMode1_Delay as described above. External equipment, which receives the data, stores the structures in sequence, each time a new HPAS completes. For the training set, the first value of the ON_ST_ACC structure received by the system as ON_ST_ACC(1) is defined, the second is defined as ON_ST_ACC(2), etc., to where the mth such record received is denoted ON_ST_ACC(m).
Based on this information, average values for the mth HPAS structure, PcAvg(m), TsAvg(m), TrAvg(m) and TcAvg(m) can be created by:
The methods of regression analysis and fitting experimentally gathered data to a specific model are well understood and there are numerous textbooks and references on this subject. The commercial mathematical analysis product MATLAB contains a curve fitting toolbox of computer programs that can readily perform this. A highly technical treatise of this subject can be found in “Optimization by Vector Space Methods,” by David Luenberger, ISBN 471-55359x. Utilizing the commonly understood techniques of regression analysis, a least-squares fit of the sequences so derived can be performed to determine constants kc, kr, ks and Pc0 for Equation (1) such that the sum-squared error between PcAvg(m) and the estimated average power for the ensemble of training HPAS is minimized. The resulting values of kc, kr, ks and Pc0 are the desired CIPP coefficients.
It should be noted that the vapor compression system disclosed herein can include an air conditioner system, a heat pump system, a chiller, or a refrigeration system. The CIPP relation and other expected input power functions disclosed herein are suitable for use in any of such vapor compression systems, and the temperature measurements can be of a gas or a liquid.
Any of the algorithms disclosed herein include machine readable instructions for execution by: (a) a processor, (b) a controller, and/or (c) any other suitable processing device, such as the CIPP processor 1102. Any algorithm, function, relation, flowchart, or equation disclosed herein can be embodied in software stored on a tangible medium such as, for example, a flash memory, a CD-ROM, a floppy disk, a hard drive, a digital versatile disk (DVD), or other memory devices, but persons of ordinary skill in the art will readily appreciate that the entire algorithm and/or parts thereof can alternatively be executed by a device other than a controller and/or embodied in firmware or dedicated hardware in a well known manner (e.g., it may be implemented by an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable logic device (FPLD), discrete logic, etc.). Further, although specific algorithms are described with reference to flowcharts or functional block diagrams depicted herein, persons of ordinary skill in the art will readily appreciate that many other methods of implementing the example machine readable instructions may alternatively be used. For example, the order of execution of the blocks may be changed, and/or some of the blocks described may be changed, eliminated, or combined.
While particular implementations and applications of the present disclosure have been illustrated and described, it is to be understood that the present disclosure is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4495779 | Tanaka et al. | Jan 1985 | A |
5224354 | Ito et al. | Jul 1993 | A |
5551248 | Derosier | Sep 1996 | A |
5867998 | Guertin | Feb 1999 | A |
6018958 | Lingelbach et al. | Feb 2000 | A |
6571566 | Temple et al. | Jun 2003 | B1 |
6631617 | Dreiman et al. | Oct 2003 | B1 |
6708508 | Demuth et al. | Mar 2004 | B2 |
7146819 | Demuth et al. | Dec 2006 | B2 |
7600390 | Manole | Oct 2009 | B2 |
8205427 | Schwarz et al. | Jun 2012 | B2 |
20040159113 | Singh et al. | Aug 2004 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20070163276 | Braun et al. | Jul 2007 | A1 |
20140000291 | Kates | Jan 2014 | A1 |
20140000292 | Kates | Jan 2014 | A1 |
20140000293 | Kates | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2009038624 | Mar 2009 | WO |
Entry |
---|
Written Opinion corresponding to International Patent Application No. PCT/US2010/059413, European Patent Office, dated Apr. 11, 2011, 5 pages. |
International Search Report corresponding to International Patent Application No. PCT/US2010/059413, European Patent Office, dated Apr. 11, 2011, 4 pages. |
Performance of a Residential Heat Pump Operating in the Cooling Mode with Single Faults Imposed, Applied Thermal Engineering 29(2009) 770-778, M. Kim, W. V. Payne, P. A. Domanski, S. Ho Yoon, C. J. L. Hermes, (Apr. 4, 2008) (9 pages). |
Development of Refrigerant Charge Indicator and Dirty Air Filter Sensor, ORNL/CON-489, V.C. Mei, F.C. Chen, Z. Gao, Feb. 2003 (29 pages). |
Virtual Refrigerant Pressure Sensors for Use in Monitoring and Fault Diagnosis of Vapor-Compression Equipment, vol. 15, No. 3., HVAC&R Research, H. Li, J. Braun, May 2009 (20 pages). |
A Statistical, Rule-Based Fault Detection and Diagnostic Method for Vapor Compression Air Conditioners, vol. 3, No. 1, HVAC&R Research, T. Rossi, J. Braun, Jan. 1997 (19 pages). |
Transient Characteristics of Split Air-Conditioning Systems Using R-22 and R-410A as Refrigerants, vol. 15, No. 3, HVAC&R Research, R. Kapadia, S. Jain, R. Agarwal, May 2009 (33 pages). |
Number | Date | Country | |
---|---|---|---|
20110144807 A1 | Jun 2011 | US |