This invention relates generally to improved cutlery, and more particularly to a kitchen knife that has interchangeable weights so that a user can adjust the balance and feel of the knife.
Knives and related cutlery devices are common tools in both private and commercial kitchens. Typically, a kitchen knife includes a blade attached to or formed integral with a handle through a tang. The handle forms the main grasping surface, while the blade forms the cutting surface along a sharpened cutting edge along its length. An opposing edge of the blade is flattened or blunted to allow a user to place a hand for additional guidance or support of the knife during use.
Weight imbalances can cause user fatigue over extended use periods, even in situations where the imbalance is relatively small. While both private and commercial users may use a knife for such extended periods, the problem is especially acute in commercial environments. In a typical fixed knife configuration, the center of gravity is located at or near the center of the handle portion and cannot be changed. Such inflexibility limits the utility of the knife, especially over periods of prolonged use. What is desired is a knife that can maintain a proper weight balance under different use conditions. What is further desired is a knife that can have its balance easily adjusted.
These desires are met by the present invention, where a kitchen knife capable of easy user-defined balancing is disclosed. With this preferred arrangement, the overall weight balance of the knife can be optimized, thereby reducing the onset of user fatigue. Such is especially valuable in commercial kitchen applications, where a user may be working with the knife for hours at a time.
According to a first aspect of the invention, a kitchen knife includes a metal blade, a handle with a hollow compartment, one or more removable weights and a weight mounting assembly that cooperates with the handle to allow the weights to be secured within the hollow compartment. The blade includes a sharp cutting edge and a blunted edge opposite the cutting edge. The handle is connected to the blade, while the weight mounting assembly can engage the handle at an end of the handle that is substantially opposite of the end of the handle nearest the blade. In this way, once a user has placed the weight or weights into a desired axial location within the hollow compartment, the weight mounting assembly can effect an axially balanced configuration suitable to the user's particular needs.
Optionally, the blade can be made from a suitable cutting material, such as a high carbon or otherwise alloyed steel. Similarly, a material making up the handle can be the same material, or can be a stainless steel. The one or more weights may be disposed in the hollow compartment such that balanced knife configuration occurs mainly along a substantially lengthwise direction of the handle. In one form, the handle engages the weight mounting assembly through a permanent connection, for example, welding a ring or related mount to the handle. In addition, the one or more weights may be, in situations where multiple weights are used, axially disposed relative to one another within the hollow compartment. The weight mounting assembly may be formed from numerous components, including a stopper or related main structural member that threadably or otherwise engages the ring or related mount that (through the aforementioned welding) is directly and permanently affixed to one or both of inner and rear surfaces of the handle, and an end cap or cover that is attached to the stopper. The stopper functions as an anchor for a generally axial rod, post or screw upon which the weight or weights (which could have complementary threaded bores formed through them) can be secured in a preferred axial place. The cover can be used to substantially close off the remaining components from the ambient environment once the weight mounting assembly is placed within the handle, and may be attached to the stopper in such a way that insertion or removal of the end cap (by screwing or unscrewing) of it produces sympathetic movement in the stopper which, by virtue of its threaded relationship with the ring or similar mount, can be inserted or removed by the screwing or unscrewing motion. Preferably, movement of the stopper and end cap is rotational, so that such rotational movement in one produces comparable rotational movement in the other. In addition, one or more indexing devices can be placed on the rod to cooperate with it to keep the weights disposed on the rod in a fixed axial location thereon. The weight mounting assembly allows relatively precise placement of the weight or weights in accordance with a preferred balance, heft or related feel as desired by the user. In another option, the handle may include protuberances on the outer surface thereof to promote improved user grip. Such construction is beneficial in avoiding having the knife slip in the user's hand.
According to another aspect of the invention, a kitchen knife including a metal blade with a cutting edge, a handle integrally defining an axially elongate hollow compartment and one or more removable weights disposable in the hollow compartment is disclosed. The cooperation between the weight and the hollow compartment is such that upon placement of the weight in the hollow compartment, a predetermined balance characteristic of the knife can be established. By being integrally constructed, the handle and the blade define a single, one-piece (i.e., unitary) structure, rather than being fastened or adhesively glued together. Such unitary construction, which may be achieved by forming the handle and blade from a single piece of material, or by welding the two together along with post-weld machining, is not only more structurally robust, but also minimizes gaps or like locations on the outer surface of the knife that can provide a breeding ground for bacteria or other contaminants.
The handle includes a proximal end and a distal end such that in a preferred embodiment, the hollow compartment terminates at the proximal end and the blade joins the handle at the distal end. The knife may further include a weight mounting assembly configured in a manner generally similar to that discussed above in conjunction with the previous aspect. Closure of the proximal end of the handle occurs with the end cap, which (in a manner similar to that discussed above) when in place closes off access to the hollow compartment that terminates at the proximal end of the handle. As previously stated, a stopper may be threaded so that it engages the handle as a device that can be screwed on or off by movement imparted to it through the end cap. In addition, a rod may be axially disposed within the hollow compartment. The rod may further be in the form of a tube, post or screw and aligned along the handle's axial dimension. To enhance cooperation between the weights and the rod, the weights may have a substantially axial bore formed through them such that they can engage the rod through the substantially axial bore. Connection between the bore and rod may be through slip fit, friction fit or threaded relationship, the latter where complementary threads promote a nut-and-bolt like fit between them. In a slip fit configuration, the weights may be held in a preferred axial place by protrusions on the rod, or by sleeves (for example, tight-fitting rubber tubes) that can fit on the outer surface of the rod and remain in place by frictional contact, adhesive or other fastening or other means. Threaded cooperation between various components such as the stopper and a complementary surface on the handle (or a stopper-engaging mount, such as a ring, affixed to the surface of the handle) is such that ease of access to the hollow compartment through unscrewing the stopper is promoted. Likewise, screwing the stopper into the complementary threads on the mount or handle makes it easy to put the knife back together again once the desired weight balance is established.
According to yet another aspect of the invention, a method of balancing a kitchen knife is disclosed. The method includes configuring the knife to have a blade, a handle defining a hollow compartment therein and one or more weights sized to fit within the hollow compartment. In addition, the method includes establishing access to the hollow compartment such that the weight (or weights) can only be added through the back or rear end of the handle that is axially opposite the blade, then situating the weight(s) in a predetermined axial position in the hollow compartment. As few or as many weights, including weights of different sizes, may be incorporated by the user until a balance deemed suitable to the user is arrived at.
Optionally, situating the weight includes defining a bore through the weight and mounting the weight onto a rod or related member such that the bore cooperates with the rod to keep the weight in a preferred position. Such arrangement promotes a secure connection between them. The mounting between the at least one weight and weight mounting device can be achieved by friction fit, slip fit, threaded connection or other approach discussed herein, where tubes or related sleeves can be slipped over the rod and used to keep the weights in a preferred location on the rod in slip fit configurations. Such applies whether the weight is a single weight or numerous weights. As discussed with the previous aspects, the blade and the handle may be formed from or into a single-piece structure. Also as discussed in conjunction with the previous aspects, the hollow compartment may be closed at its terminal end. A weight mounting assembly can be used to secure the one or more weights within the handle, as well as close off the terminal end of the handle. The assembly may include a handle-engaging member (for example, a ring or related device to couple the back or interior surface of the handle to the rest of the assembly), an anchor member and a rod that is coupled to or otherwise supported by the anchor member. The assembly may additionally include an end cap that may be friction fit, threaded, keyed or otherwise joinable to other components within the weight mounting assembly. For example, by being threadably attached to the anchor member, a user desirous of changing the balance of the knife, may unscrew the end cap and anchor member to allow exposure of the rod and other components used to carry and position the weights. Specifically, the anchor member acts as a base for the rod, elongate tube, post or screw in such a way as to have the rod extend in an axially forward direction into the hollow compartment. As previously discussed, closing the hollow compartment may be achieved by placing the removable parts of the assembly into the hollow compartment that is defined in the handle, and attaching such parts to the handle-engaging member. Thus, in a preferred form, at least the parts of the assembly used to support the weights (for example, the rod and the stopper or anchor, to which the rod and weights may be attached) is removable from the handle. In this way, when a user desires to make rapid, small-scale changes to the knife's balance, he or she need merely remove such parts, add or remove weights, then reinsert those parts of the assembly into the handle.
The following detailed description of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Referring to the figures, a kitchen knife 1 and the various components making it up are shown. Referring with particularity to
The knife 1 also includes a handle 20 that is affixed to blade 10. The handle 20 is tapered from its proximal end 22 to its distal end 21, where the distal end 21 smoothly transitions into blade 10. In a preferred form, the blade 10 and handle 20 form a one-piece unitary structure. Such structure can be formed by having the blade 10 and handle 20 be formed from a single piece of material in situations where the blade and handle materials are the same, or joined together (for example, by welding) in situations where the materials are dissimilar. One example of where the handle 20 may be of a dissimilar material to that of the blade 10 is where the handle 20 is made of 304 stainless steel. The handle 20 of the present invention can be formed from a single piece of material that provides its own support structure. In another form, two mirror-image halves with cavities or recesses formed therein may be joined together (such as by welding), and subsequently joined to the blade 10. Such an approach is superior to that where the handle is formed from halves over a tang or related stub shaft and subsequently joined by rivets, screws or related fasteners. Referring again to
To assemble the knife, the blade 10 is joined together with the handle 20 by welding or related joining process known to those skilled in the art. After welding, the weld line can be removed by grinding and polishing, giving the knife 1 the look and mechanical integrity of a single piece unitary structure. Once the handle 20 is made by two separated stainless steel pieces and welded together, a ring 31 (which is shown in isolated form in
Referring next to
To help isolate the hollow compartment 25 from the ambient environment, sealing ring 34 (which is shown in isolated form in
Also as shown in
Weights 40 are of generally cylindrical construction, and define an axial bore 140 therethrough. The relationship between the axial bore 140 and the rod 35 is such that placing the weights 40 on the rod 35 is akin to stringing beads in that one or more of the weights 40 are stacked relative to one another along the rod 35 until a user-determined heft and axial balance is achieved. The attachment of one or more sleeves 36 (two of which are shown in
To adjust the weight of the handle 20, the user removes the cover (i.e., end cap) 33 to gain access to stopper 32 and the rod 35 and weights 40 mounted on the stopper 32. Referring with particularity to
Referring lastly to
Having described the present invention in detail and by reference to the embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
136499 | Gaches | Mar 1873 | A |
149833 | Brown et al. | Apr 1874 | A |
229219 | Wilson | Jun 1880 | A |
648265 | Von Jaraczewski | Apr 1900 | A |
874583 | Garret | Dec 1907 | A |
1092529 | Horn | Apr 1914 | A |
1342383 | Horvath | Jun 1920 | A |
2615247 | Waters | Oct 1952 | A |
4030194 | Hendricks | Jun 1977 | A |
4470327 | Gerber et al. | Sep 1984 | A |
4669186 | Liu | Jun 1987 | A |
5402578 | Whitman et al. | Apr 1995 | A |
6195899 | Watanabe | Mar 2001 | B1 |
6419371 | McCalla et al. | Jul 2002 | B1 |
6434836 | Olivares | Aug 2002 | B1 |
6640445 | Crawford | Nov 2003 | B1 |
6782626 | Gibbs | Aug 2004 | B1 |
7305908 | Chi et al. | Dec 2007 | B2 |
20030221323 | DeAsis et al. | Dec 2003 | A1 |
20060096102 | DeAsis et al. | May 2006 | A1 |
20090158600 | Ishai | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
3315768 | Oct 1984 | DE |
202006017812 | Mar 2007 | DE |
1016507 | Jul 2000 | EP |
177344 | Mar 1922 | GB |
2006-110165 | Apr 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20090007434 A1 | Jan 2009 | US |