The invention relates to a method for storing a selection of multimedia objects by a dedicated storage hosted in a router or a storage device residing close to a router. Such storage is also referred to as caching. The invention further relates to a dedicated storage hosted in a router or a storage device residing close to a router for caching a selection of multimedia objects. Such dedicated storage or storage device is generally known as a cache, which cache is provided for serving a group of users.
Caching algorithms for CDNs (content distribution networks), reverse proxies or transparent caches, etc. have been studied and are fairly well understood. Many variants of caching algorithms for individual caches are known (e.g., LRU (least recently used), LFU (least frequently used), Belady's min algorithm, . . . ). Such a cache bases its caching decisions solely on the requests it sees from users it serves. Basically it first makes a prediction of the frequency with which each item (that is not too old) will be requested, i.e., it estimates the item's future popularity (or reversely, the first time an item will be re-used). Then it orders the items from highest to lowest popularity (or smallest to highest re-use time respectively) and caches the most popular objects (or most imminent items respectively) (as illustrated in
Cache collaboration algorithms (e.g., hierarchical, borrowing caches, federated caches) between caches deployed in a tree network also exist. They rely on a central authority (which may be either implemented centrally or in a distributed way) that makes coordinated decisions related to where to store content items and from where to serve the requests. Viewed in that way, these cache collaboration strategies oversee and govern one large virtual cache consisting of many individual coordinated caches that are organized in a tree network. However the centrally coordinated caches only work in a geographically confined region and for a tree network.
The above shows that both the caches that operate based on local predictions as well as caches that operate based on centrally coordinated mechanisms (which are in fact only extension of the previous case to a virtual cache serving a geographically confined set of communities) fail to correctly estimate the popularity of multimedia items for a predetermined group of users (the users served by the network node or router that performs the caching). There is thus a need for an improved caching mechanism.
It is an object of the present invention to provide an improved caching mechanism.
To this end, the invention provides a method for caching a selection of multimedia objects by a cache (either implemented as dedicated storage in a router or in a separate device close to the router), the method comprising the steps of:
In this proposed invention the caches are making independent decisions, and they do so based on local information and based on exchanged information with other caches combined with information from formal or informal social networks (retrieved from a database) to improve the caching decisions. Thereby the method for caching includes the local predictions, whereby the popularity of multimedia objects is estimated based on the serving the group of users by the cache itself. The method for caching further includes predictions of other caches in the network, whereby the influence of each of the other cache in the final popularity depends on the similarity between the other cache and the first cache. Thereby the popularity of multimedia objects, used for caching, is better tailored to the users served by the cache, because the invention exploits the fact that users in disconnected geographic regions may expose similar taste in content. By identifying the social relations between (groups of) users and the local consumption patterns in each group, the imminent popularity of content objects will be identified sooner with this invention than with state-of-the-art systems. Hence, the popularity factors calculated according to the invention are improved with respect to the local predictions, yet without getting too general, as only groups with similar taste impact other groups. As a consequence the invention will yield better caching decisions, which in turn will lead to higher cache hit ratios. The traffic over the core network will decrease for the same QoE (quality of experience) of the user, or the QoE of the user will improve with the same capacity of the core network. In that way the network provider will benefit from the invention by saving traffic, the users will see an improved QoE and, this improved user satisfaction will in turn be beneficial to the online social networks as well.
Preferably the first popularity factor is calculated based on a number of historical requests for the respective multimedia object by said group of users. Preferably each of the further popularity factors are calculated based on a number of historical requests for the respective multimedia object by said respective other groups of users. Calculating a popularity factor based on the number of historical requests is known to the skilled person, therefore using such known mechanism allows obtaining a local popularity factor.
Preferably said number of historical requests is counted in a predetermined time period, that is updated regularly (usually referred to as a sliding window). By limiting and continuously updating the time period wherein history requests are counted, the popularity of multimedia objects that are past their popularity peak will decrease since part of the requests will fall out of the sliding window. In this manner, the popularity factor can be kept up-to-date and new multimedia objects that are frequently requested will have a higher popularity than old multimedia objects that have been requested much more often (in the past) than the new multimedia objects, but now are way past their popularity peak.
Preferably said database comprises a matrix wherein at least one of a column and a row represent said users, and wherein at least another one of said column and said row represent said further users, and wherein the values in the matrix define the relation between the respective users and the respective further users. Via such matrix, the similarity between caches can be determined on a user-level or on a group-level. Thereby, the skilled person will recognize that different algorithms can be applied for obtaining a single similarity factor between two caches based on the matrix. A simple example of the algorithm counts the relations between users of one router and users of the other router. The result of the count quantizes the similarity. In other algorithms, a higher influence is given to users with high multimedia object consummation.
Preferably said matrix comprises a first predetermined value when the user identified by the row index is linked to the user identified by the column index via a social community, and a second predetermined value when the user identified by the row index is not linked to the user identified by the column index via said social community. Preferably the social community comprises at least one of Facebook, Twitter, Instagram, Google+, Netflix, Tumblr, Snapshot, Pinterest and Vine. Social communities tend to have groups of people linked to one another, wherein the people share the same interests. Because the people that are linked have the same or at least similar interests, it is likely that the same or similar multimedia objects are requested by the so linked people. Therefore using the social community information as a basis for defining relations between users and further users returns fairly good results. Alternatively, if this social information is not available, the similarity between the group of users served by the first cache and the groups of users served by other caches can be datamined based on historical similar consumption trends. Hence, if the social information is not explicitly available, a separate entity performs this data mining.
Preferably said retrieving said database comprises observing requests made by said number of users and by said further number of users over a period of time, and detecting respective similarities between said number of users and said further number of users. This feature eliminates the need for social communities. According to the present feature, the database is mined via observation. When observing users, similarities in multimedia object consumption can be detected and stored in a database. Based on this detection (based on history requests), future similarity factors are calculated and multimedia objects are cached via the method of the invention.
Preferably the step of selecting which multimedia objects to cache comprises ranking the multimedia objects from highest to lowest the second popularity factor and selecting the top list of the ranked multimedia objects. Thereby the top list comprises a predetermined number of multimedia objects, or comprises a number of multimedia objects occupying (or representing) a predetermined data capacity. By ranking and then selecting a top list, an easy way is provided to select the multimedia objects with the highest second popularity factor. Furthermore, in the cache, the top list of multimedia objects is stored. Alternatively, the cache has a predetermined data capacity, which is preferably fully occupied. In the latter case, multimedia objects are selected from the ranked list until the cache is full.
Preferably said calculating said second popularity factor is calculated for each multimedia object as the sum of the first popularity factor and the further popularity factors retrieved from other caches multiplied by their corresponding similarity factors between the first cache and the other caches. Thereby a simple formula can be executed by each cache, based on information calculated in the cache and information retrieved by the cache, to determine the second popularity factor of the multimedia objects.
Preferably the second popularity factor further includes an externally determined popularity factor received from an external server with a global view on content consumption (e.g., other distribution channels than online viewing for a movie, i.e., the “box office” performance from when the movie was offered in theaters or DVD sales; or for the current episode of a series the performance of previous episodes in the same series), multiplied by a predetermined factor.
Via externally determined popularity factors, new multimedia objects (that have not been requested because they are new) are also represented in the popularity estimations of the invention. For example a newly released movie can be cached in the first cache when it is estimated that this movie will have a high popularity in the near future.
Preferably said predetermined factor is increased when requests of said number of users confirm the externally determined popularity factor, and whereby said predetermined factor is decreased when requests of said number of users differ from the externally determined popularity factor. By increasing and decreasing the predetermined factor based on the similarity between the requests and the popularity, the influence of the externally determined popularity factor will reach an optimum.
Preferably said serving said group of users comprises systematically transmitting, upon request of one of said users, a respective multimedia object to the user.
The invention further relates to a caching device close to a router or a router hosting storage adapted for serving a number of users in a network, said router being operationally connected to a cache memory, and wherein said router comprises programmed instructions for executing the method according to any one of the previous claims.
Some embodiments of apparatus and/or methods in accordance with embodiments of the present invention are now described, by way of example only, and with reference to the accompanying drawings, in which:
Since more and more unicast video is offered over the open Internet, it is desirable to deploy caches close to the users (see
Reverse proxies and transparent caches decide for themselves which items they cache at any moment in time based on the requests they see from the users they serve. Since these caches reside very close to the users, and hence, the number of users they serve is rather limited compared to caches deeper in the network (e.g., the caching nodes of a global CDN (content distribution network)), this information (i.e., the requests made by the users served by the cache) is too noisy to make accurate caching decisions pertaining to which content items to cache (see below). Such conventional method is illustrated in
The invention is based on the insight that users (served by one cache) are “connected” to other users (served by other caches) via online social networks (e.g., facebook, twitter, google+) or via the fact that some (informal) communities share common interests, which connection can be used in caching decisions. This invention proposes a way to exploit the information extracted from (formal or informal) social networks to make better caching decisions, resulting in higher cache hit ratios.
Alternatively, the matrix comprises information defining the relation between user groups (instead of the relations between individual users). Such matrix can be formed using the information of the matrix shown in
The skilled person will understand that a database comprising information defining relations between users can be formed in many different ways without decreasing the functionality and usability of such database. For example the database can be created such that all users are represented in both column and row such that relations between users served by a same network node are also monitored.
In the present invention, relation is interpreted as belonging to a similar social group, explicitly or implicitly. In a social group, overlapping interests can generally be found, which overlapping interests reflect in the content usage (or requests of multimedia objects). Therefore in the context of the invention, a relation implies an at least partially similar behavior on the network.
The basic goal of this invention is to make the popularity measurements M(R) (or equivalently the re-use times) more reliable (i.e., less noisy). In order to achieve this, two pieces of information are used:
The invention proposes to combine these two pieces of information to come to a better popularity estimation, and hence, better caching decisions. This is illustrated in
Based on these received and determined factors, the first network node calculates a second (enhanced) popularity factor via following formula:
M(R)+(S′×M(R′))+(S″×M(R″))+( . . . )+(Sn×M(Rn))
In a preferred example as is shown in
The second (enhanced) popularity factor, calculated in the first network node, has a format that is highly similar to the conventional popularity factor format (such as M(R) in
It has to be understood that, apart from this new popularity P2 (or re-use time) estimation algorithm, the rest of the caching algorithm preferably remains the same as in the prior art. Thus the ordering 6 of the multimedia objects M based on the popularities M(R), which is shown in
The further description will be given with respect to some particular embodiments. It will be clear that these particular embodiments are not limiting, and are only examples falling within the general principles of the invention. In these embodiments it is assumed for simplicity of the example that each multimedia object M is uniquely definable by an identifier A, B, C, D, E and F. This can be either a hash calculated on the video file, the unique name from a database (e.g., IMDB (internet movie data base) or tv.com) or the unique URL (uniform resource location) of the original location of the file.
In these embodiments it is further assumed for simplicity of the example that a cache maintains popularity information for all “active” items. Active items are items for which a request was seen less than a time T ago (where T is a large time interval). Using this timeout time T ensures that the caches only need to maintain popularity information for a finite (albeit possibly very large) set of content items. (The letters A, B, C, D, E, F and G are used as example for unique identifiers).
The matrix 4 with entries (referred to as weights in
The first embodiment relies on LFU to make the local popularity measurements. In particular, LFU maintains the number of requests Pk,X for a multimedia object X over a past window on cache k (and possibly also on the origin server). (This window usually has a rectangular shape, but other shapes to decrease the importance of requests in the distant past less, e.g., an exponentially decaying window, can be used too). This number of requests for active items on cache k constitutes the vector Pk (being the popularity of the respective item on the cache at a certain point in time). The vectors Pk are exchanged between all caches at regular instants. In order to make a better prediction for the popularity of item X, cache k combines the information in these vectors Pl and the matrix M in the following way: P′k,X=Σl Mkl·Pl,X. The cache makes better caching decisions based on these more accurate measurements P′k,X of the popularities of the items.
The second embodiment relies on LRU (or any variant of Belady's min algorithm). In particular, LRU (implicitly) maintains the re-use times Tk,X of each active item X on cache k (and possibly also on the origin server). These re-use times, stored in a vector Tk, are exchanged between the caches at regular instants. In order to make better estimations of the re-use time, cache k combines the information in these vectors Tl and the matrix M in the following way: T′k,X=(Σl Mkl·(Tl,X)−1)−1 The cache makes better caching decisions based on these more accurate measurements T′k,X of re-use time of the items.
The invention can be embedded in existing caching algorithms. Caching algorithms can work as before, estimating the popularity (or re-use time) and basing caching decision on popularity (or re-use time). Thereby the popularity (or re-use time) upon which the decisions are made, is not the locally measured one (as in the prior art), but a combination of all popularities of all caches, where the weight of each is determined by social relations.
A person of skill in the art would readily recognize that steps of various above-described methods can be performed by programmed computers. Herein, some embodiments are also intended to cover program storage devices, e.g., digital data storage media, which are machine or computer readable and encode machine-executable or computer-executable programs of instructions, wherein said instructions perform some or all of the steps of said above-described methods. The program storage devices may be, e.g., digital memories, magnetic storage media such as a magnetic disks and magnetic tapes, hard drives, or optically readable digital data storage media. The embodiments are also intended to cover computers programmed to perform said steps of the above-described methods.
The description and drawings merely illustrate the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass equivalents thereof.
The functions of the various elements shown in the FIGs., including any functional blocks labeled as “processors”, may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, network processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), and non volatile storage. Other hardware, conventional and/or custom, may also be included. Similarly, any switches shown in the FIGS. are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
It should be appreciated by those skilled in the art that any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the invention. Similarly, it will be appreciated that any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.
Number | Date | Country | Kind |
---|---|---|---|
13306341.2 | Sep 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/070185 | 9/23/2014 | WO | 00 |