This invention generally relates to firing tips for spark plugs and, more particularly, to methods of welding precious metal firing tips to spark plug electrodes using capacitive discharge welding techniques.
It is known to attach firing tips, such as those made from various precious metals, to spark plug electrodes for the purpose of improving the resistance of the electrode to corrosion or oxidation, as well as spark erosion that may occur when the spark plug is in use in a combustion chamber of an internal combustion engine. Different methods and techniques have been developed for carrying out this attachment, including certain laser and resistance welding techniques.
Because of the extremely harsh environment in a combustion chamber, however, there is always a need to try and improve the strength of the attachment between the firing tip and the underlying electrode and, where possible, to improve the thermal conductivity across that junction.
According to one aspect, there is provided a method of attaching a firing tip to a spark plug electrode. The method may comprise the steps of: aligning the firing tip with the spark plug electrode; pressing the firing tip against the spark plug electrode; and capacitive discharge welding the firing tip to the spark plug electrode by releasing stored energy from one or more energy storage devices so that weld current rapidly flows through the firing tip and the spark plug electrode, wherein the capacitive discharge welding forms a heat affected zone with a capacitive discharge weld joint between the firing tip and the spark plug electrode.
According to another aspect, there is provided a spark plug electrode, comprising:
an electrode body; and a firing tip attached to the electrode body with a capacitive discharge weld joint, wherein the capacitive discharge weld joint includes solidified molten material from both the electrode body and the firing tip.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The capacitive discharge welding method described herein may be used to rapidly, securely and effectively join firing tips to spark plug electrodes, including ground electrodes and/or center electrodes. In contrast with some traditional resistance welding techniques, the present capacitive discharge welding method is a rapid solidification joining process that may result in increased weld strength, improved thermal conditions, longer spark plug life, improved manufacturing efficiency, and/or extended welding equipment life, to name a few possibilities. “Capacitive discharge (CD) welding,” as used herein, broadly refers to a type of resistance welding technique that uses charged capacitors or other energy storage devices to quickly release stored energy in order to create a capacitive discharge weld joint between a firing tip and a spark plug electrode. Because capacitive discharge welding uses charged capacitors, repeatable energy releases are typically independent of line voltage fluctuations and are capable of fine energy adjustment. It should be recognized that the capacitive discharge welding method described herein may be used to weld or join any number of different firing tips to various spark plug electrodes, and is not limited to the exemplary embodiments described below.
An exemplary spark plug is illustrated in
The center electrode 12 and/or the ground electrode 18 may include a body portion having a nickel-based external cladding layer and a copper-based internal heat conducting core. Some non-limiting examples of nickel-based materials that may be used with the center electrode 12 and/or the ground electrode 18 include alloys composed of nickel (Ni), chromium (Cr), iron (Fe), aluminum (Al), manganese (Mn), silicon (Si), and any suitable alloy or combination thereof, including the nickel-based alloys commonly referred to as Inconel® 600 and 601. The internal heat conducting core may be made of pure copper, copper-based alloys, or some other material with suitable thermal conductivity. Of course, other materials and configurations are certainly possible, including center and/or ground electrodes that have more than one internal heat conducting cores or no internal heat conducting cores at all. As used herein, the term “spark plug electrode” broadly includes any spark plug center electrode, ground electrode, or a component thereof.
The firing tips 20 and/or 22 may include one or more precious metals and are designed to increase the operating life of the spark plug 10. Skilled artisans will appreciate that a variety of different firing tip configurations, arrangements and compositions exist, and that the capacitive discharge welding method described herein is not limited to any particular one. For example, firing tip 20 and/or 22 may be in the shape of a rivet, cylinder, bar, column, wire, ball, mound, cone, flat pad, disk, ring, or sleeve, to cite a few of the possibilities. In certain embodiments of the present capacitive discharge welding method, it may be desirable to use firing tips having smaller contact welding areas, such as balls, columns, cones, or tips with projections, as such configurations can concentrate the weld current during the capacitive discharge welding process. In another example, firing tip 20 and/or 22 may be a single-piece firing tip (like ground electrode firing tip 22), or a multi-piece firing tip (like center electrode firing tip 20) which includes both a precious metal sparking component 40 and an intermediate component 42. The intermediate component 42 can provide an improved welding surface for attachment of the multi-layer firing tip to the spark plug electrode and can act as an intervening or stress-relieving layer. Some non-limiting examples of suitable precious metals that may be used with firing tips 20 and/or 22 include iridium (Ir), platinum (Pt), rhodium (Rh), ruthenium (Ru), palladium (Pd), gold (Au), silver (Ag), tungsten (W), various refractory and/or rare earth metals, and any suitable alloy or combination thereof. As used herein, the term “firing tip” broadly includes any center electrode firing tip, ground electrode firing tip, single piece-piece firing tip, multi-piece firing tip, or a component thereof.
Turning now to
In step 102, the method aligns the firing tip with the spark plug electrode to which it is being joined. Various types of equipment and techniques may be used to carry out this aligning or positioning step. For instance, in the example shown in
Next, in step 104, the method presses the firing tip against the spark plug electrode with a predetermined amount of weld force. The exact amount of weld force to be applied can vary depending on a variety of factors—factors such as the firing tip and spark plug electrode materials, the size and shape of the firing tip, and the presence or absence of a projection on the firing tip can all affect the amount of applied weld force—but usually the weld force used in the present capacitive discharge welding process is less than the corresponding amount of weld force used in conventional resistance welding operations. Some testing and experimentation has shown that an initial weld force of less than 15 lbs. (for example, between about 3-14 lbs.), depending on tip diameter, may be desirable for capacitive discharge welding a spherical-shaped precious metal firing tip to a spark plug electrode made from a nickel-based alloy, such as Inconel 600 or 601. The weld force can remain constant or nearly constant for the duration of the weld time as the spherical-shaped precious metal firing tip is upset (i.e., slightly sinks) into the surface of the nickel-based spark plug electrode. This differs from traditional resistance welding operations, for example, which typically apply a weld force of about 25-50 lbs. for firing tips and spark plug electrodes having similar shapes and made from similar materials.
In step 106, the method rapidly provides weld current to the junction between the firing tip and the spark plug electrode according to a capacitive discharge welding process. Because the capacitive discharge welding process described herein seeks to create a different weld joint and heat affected zone than those created by conventional resistance welding techniques, the profile of the weld current may be considerably different than that employed in standard resistance welding. As demonstrated by the graphs in
According to
The sudden introduction of significant quantities of weld current at the junction or interface between the firing tip and the spark plug electrode, as compared to traditional resistance welding techniques, helps create a heat affected zone 70 and a capacitive discharge weld joint 72 that is somewhat unique in nature, with respect to precious metal firing tips and nickel-based spark plug electrodes. With reference to
First, the heat affected zone 70 may be quite small when compared to heat affected zones formed by traditional resistance welding techniques (e.g., the volume of a heat affected zone of a capacitive discharge welded spherical-shaped firing tip may only be up to 30% of that of a traditional resistance welded firing tip having the same shape), such as that shown in
In step 108, the method rapidly cools the junction between the firing tip and the spark plug electrode according to a capacitive discharge welding process. The amount of time it takes to cool the interface or junction between the firing tip and the spark plug electrode is, at least partially, a function of the total amount of energy that is put into the components during the welding process. And, as demonstrated above in
It is should be appreciated that steps 104, 106 and 108 may combine to act as a capacitive discharge welding event, and may be carried out in a different manner or order than described above. For example, steps 104 and 106 may be performed concurrently instead of sequentially, so that the firing tip is being pressed against the spark plug electrode at the moment that the method provides weld current to the junction. In a different example, two or more of these steps may be combined or consolidated into a single step, as it is not necessary for there to be distinct boundaries or separations between the steps of the present methodology. After the aforementioned capacitive discharge welding process, one or more “post-capacitive discharge welding processes” may be carried out, including additional capacitive discharge welding.
For example, step 120 and
For instance, the final heat affected zone 74 is still much smaller than the corresponding heat affected zone 270 of the prior art construction. Also, the final heat affected zone 74 may have a nature and microstructure that is similar to that described above (for example, it may have a fine grain microstructure and may be a solidified molten mix of the firing tip and electrode materials, as opposed to being a more conventional molecular or forged bond). Depending on the amount of heat and force applied, the top surface of the of the final form 90 of the firing tip may be flush to the surface of the ground electrode 18, or it may be slightly recessed into the surface of the electrode, or it may extend away from and slightly protrude from the electrode surface.
The capacitive discharge welding process may result in a higher weld strength than that achieved by conventional resistance welding methods, provide for increased spark plug life, improve the efficiency of the manufacturing process by reducing or eliminating certain processing steps as well as reducing the amount of energy needed, and/or extend the life of the welding equipment by easing certain conditions like the amount of heat and pressure on the various arbors, to cite a few possibilities. The capacitive discharge welding process and resulting capacitive discharge weld joint described herein may enjoy or embody other characteristics or attributes as well.
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
This application claims the benefit of U.S. Provisional Ser. No. 61/769,468 filed on Feb. 26, 2013, the entire contents of which are incorporated herein.
Number | Date | Country | |
---|---|---|---|
61769468 | Feb 2013 | US |