The present invention relates to a method and apparatus for damping vehicle noise by casting steel inserts into powertrain housing components to provide noise-damping interfaces within the cast components.
Vehicle engine noise transmitted to the passenger compartment of the vehicle contributes to rider discomfort. In an effort to reduce the transmission of noise from the engine to the passenger compartment, a variety of techniques have been employed, including the use of polymer coatings on engine parts, sound absorbing barriers, and laminated panels having viscoelastic layers. Other noise reducing efforts have included the use of noise reducing engine mount designs, including active engine mounts that employ magnetorheological fluid actuators. While existing noise reducing efforts may have a positive effect on reducing the transmission of noise to the passenger compartment, there still remains a need in the art to address the problem associated with the source of the noise. Accordingly, there is a need in the art for alternative ways to dampen vehicle noise.
U.S. patent application Ser. No. 10/961,813, filed Oct. 8, 2004, commonly assigned with the present application, teaches Coulomb friction damped disc brake rotor configurations having an insert within the rotor to provide improved damping. Also, U.S. patent application Ser. No. 11/062,101, filed Feb. 18, 2005, commonly assigned with the present application, teaches damping elements positioned within a void of a vehicle powertrain component for noise damping. Further, U.S. Provisional Application Ser. No. 60/717,310, filed Sep. 15, 2005, entitled “Bi-Metal Disc Brake Rotor and Method of Manufacturing”, commonly assigned with the present application, teaches a method for manufacturing a friction damped disc brake rotor, including the steps of: (A) positioning at least one insert into a mold, wherein the insert has a body with tabs extending therefrom to hold the insert in a desired position within the mold; and (B) casting a rotor cheek of the disc brake rotor in the mold around the insert such that a portion of each tab is bonded with the rotor cheek and the body is substantially non-bonded with the rotor cheek so that the body provides a proper interfacial boundary with the cheek for damping while the bonding of the tabs with the rotor cheek prevents corrosion-causing exterior elements from reaching the interfacial boundary.
The invention provides a method for manufacturing a powertrain component enclosure member, including the steps of: (A) positioning at least one insert into a mold, wherein the insert is provided with a coating to prevent bonding between the insert and the casting material; and (B) casting a wall of the powertrain component enclosure member in the mold around the insert such that a major portion of the insert is substantially non-bonded with the casting material to provide a proper interfacial boundary with the casting material for damping noise.
The insert may include tabs which support the insert in a suspended position within a mold for casting. The insert is provided with a coating and the coating is washed off of the tabs prior to casting to achieve at least partial bonding of the tabs with the cast wall of the powertrain component enclosure member. Alternatively, the tabs may be coated with graphite or other suitable agent to achieve the bonding with the wall.
With a portion of each tab bonded with the wall, corrosion-causing exterior elements are prevented from reaching the interfacial boundary.
The insert may be a flat or curved laminar component, or it may be a component having a large surface area, such as a bundle of wires, etc., which would provide greater surface area for interfacial boundaries, thus increasing damping.
The invention has been demonstrated for grey iron cast around a steel insert, however, a similar effect should be obtained if an insert is cast into aluminum or magnesium alloys. Like the cast iron/steel insert arrangement, adhesion of the cast structure to the insert must be avoided by use of a barrier coating, or by selection of an insert material that is not “wet” (i.e. melted to cause bonding) by the casting material. An aluminum insert could be used instead of steel, as long as it doesn't dissolve and has a higher melting point than the cast metal.
Also, the invention may be applicable to products other than powertrain components, such as steering knuckles, control arms, cast cradles, cast instrument panel beams, or any structural or closure casting. Also, the invention may benefit traction drive motors for hybrid electric and pure electric propulsion systems, as well as containment/housings for high voltage contactors. Other potential applications include any structure which produces audible and objectionable noise in service, such as manufacturing machines, railroad equipment, passenger planes, etc. However, the invention seems particularly well suited for powertrain components which house or enclose one or more rotating, noise-generating components of a vehicle powertrain.
These and additional features and advantages of the present invention will become clearer from the following detailed description of the preferred embodiments.
The invention provides a method for manufacturing a powertrain component enclosure member, including the steps of: (A) positioning at least one insert into a mold, wherein the insert is provided with a coating to prevent bonding between the insert and the casting material; and (B) casting a wall of the powertrain component enclosure member in the mold around the insert such that a major portion of the insert is substantially non-bonded with the casting material to provide a proper interfacial boundary with the casting material for damping.
Preferably, the insert is supported within the mold cavity by a non-coated tab, as described in the above-referenced U.S. Provisional Application Ser. No. 60/717,310, filed Sep. 15, 2005, entitled “Bi-Metal Disc Brake Rotor and Method of Manufacturing”, commonly assigned with the present application, teaches a method for manufacturing a friction damped disc brake rotor, including the steps of: (A) positioning at least one insert into a mold, wherein the insert has a body with tabs extending therefrom to hold the insert in a desired position within the mold; and (B) casting a rotor cheek of the disc brake rotor in the mold around the insert such that a portion of each tab is bonded with the rotor cheek and the body is substantially non-bonded with the rotor cheek so that the body provides a proper interfacial boundary with the cheek for damping while the bonding of the tabs with the rotor cheek prevents corrosion-causing exterior elements from reaching the interfacial boundary. Further details regarding the coating and process are found in U.S. Provisional Application Ser. No. 60/718,579, filed Sep. 19, 2005, entitled “Bi-Metal Disc Brake Rotor and Method of Manufacturing”, commonly assigned with the present application.
Referring to
The insert 12 is a pre-manufactured steel or aluminum component having a coating on opposing surfaces thereof. These coated surfaced 36, 38 do not bond with the cast metal in the casting operation. The lack of “wetting” or affinity along these coated surfaces produces the desired interfacial boundary for damping. However, again, the tabs 16, 18 are configured in a manner to bond with the cast metal of the wall 14. This bonding may be achieved by first coating the tabs with the same material which forms the coated surfaces of the insert and then cleaning the coating off the tabs to locally remove the coating to allow the tabs to be micro-welded to the cast iron (or aluminum or magnesium alloy) to effectively seal the rest of the insert/iron interface from intrusion by water or other elements from the exterior of the casting. Alternatively, a graphite or other suitable coating may be applied to the tabs to enhance bonding with the cast metal. So called “wetting” of the tab edges can also be accomplished by masking the tab prior to application of the coating. The insert may comprise any material having a melting point higher than that of cast alloy that would not be dissolved during the casting process.
Tabs are not shown in other embodiments, but it is expected that some variation of the tabs 16, 18 would be included with each design.
b shows a schematic perspective view of a rear end housing 610 having casting inserts 612, 614 in accordance with the invention.
The locating tabs are not shown in the various views, but can be used on the ID, OD or both positions to stabilize the insert during the metal casting operation. The number and placement of tabs depends on the specific part geometry and its dimensions, and on the thickness of the insert. The wall within which the casting is inserted may be locally thickened to accommodate the insert.
The inserts are preferably 1.5 to 2 mm in thickness, but other thicknesses may be used. The thicknesses are chosen to prevent bending of the insert while not being so thick as to “chill” the surrounding casting to the point that objectionable carbides are produced.
By preventing the insert from reacting with the liquid alloy (i.e. casting material) during casting, the interfaces are maintained for desired sound damping. By enhancing the bond between the tabs and the cast steel, the gap at the tab areas is eliminated in order to isolate the interfaces from the casting exterior environment to eliminate corrosion issues in service.
As a further alternative embodiment, the above-described coated inserts may be provided in a structural oil pan.
To those skilled in the art to which this invention pertains, the above described preferred embodiments may be subject to change or modification. Such change or modification can be carried out without departing from the scope of the invention, which is intended to be limited only by the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/718,945, filed Sep. 20, 2005.
Number | Name | Date | Kind |
---|---|---|---|
1989211 | Norton | Jan 1935 | A |
2603316 | Pierce | Jul 1952 | A |
3085391 | Hatfield et al | Apr 1963 | A |
3147828 | Hunsaker | Sep 1964 | A |
3292746 | Robinette | Dec 1966 | A |
3378115 | Stephens, III | Apr 1968 | A |
3425523 | Robinette | Feb 1969 | A |
3509973 | Kimata | May 1970 | A |
3575270 | Reinbek et al. | Apr 1971 | A |
3774472 | Mitchell | Nov 1973 | A |
3841448 | Norton, Jr. | Oct 1974 | A |
3975894 | Suzuki | Aug 1976 | A |
4049085 | Blunier | Sep 1977 | A |
4072219 | Hahm et al. | Feb 1978 | A |
4250950 | Buxmann et al. | Feb 1981 | A |
4379501 | Hagiwara et al. | Apr 1983 | A |
4475634 | Flaim et al. | Oct 1984 | A |
4523666 | Murray | Jun 1985 | A |
4905299 | Ferraiuolo et al. | Feb 1990 | A |
5004078 | Oono et al. | Apr 1991 | A |
5025547 | Sheu et al. | Jun 1991 | A |
5083643 | Hummel et al. | Jan 1992 | A |
5115891 | Raitzer et al. | May 1992 | A |
5139117 | Melinat | Aug 1992 | A |
5143184 | Snyder et al. | Sep 1992 | A |
5183632 | Kluchi et al. | Feb 1993 | A |
5259486 | Deane | Nov 1993 | A |
5310025 | Anderson | May 1994 | A |
5416962 | Passarella | May 1995 | A |
5417313 | Matsuzaki et al. | May 1995 | A |
5509510 | Ihm | Apr 1996 | A |
5530213 | Hartsock et al. | Jun 1996 | A |
5582231 | Siak et al. | Dec 1996 | A |
5620042 | Ihm | Apr 1997 | A |
5660251 | Nishizawa et al. | Aug 1997 | A |
5789066 | DeMare et al. | Aug 1998 | A |
5819882 | Reynolds et al. | Oct 1998 | A |
5855257 | Wickert et al. | Jan 1999 | A |
5862892 | Conley | Jan 1999 | A |
5878843 | Saum | Mar 1999 | A |
5927447 | Dickerson | Jul 1999 | A |
6047794 | Nishizawa | Apr 2000 | A |
6073735 | Botsch et al. | Jun 2000 | A |
6206150 | Hill | Mar 2001 | B1 |
6216827 | Ichiba et al. | Apr 2001 | B1 |
6223866 | Giacomazza | May 2001 | B1 |
6241055 | Daudi | Jun 2001 | B1 |
6241056 | Cullen et al. | Jun 2001 | B1 |
6283258 | Chen et al. | Sep 2001 | B1 |
6302246 | Naumann | Oct 2001 | B1 |
6357557 | DiPonio | Mar 2002 | B1 |
6405839 | Ballinger et al. | Jun 2002 | B1 |
6465110 | Boss et al. | Oct 2002 | B1 |
6481545 | Yano et al. | Nov 2002 | B1 |
6505716 | Daudi et al. | Jan 2003 | B1 |
6507716 | Nomura et al. | Jan 2003 | B2 |
6543518 | Bend et al. | Apr 2003 | B1 |
6799664 | Connolly | Oct 2004 | B1 |
6880681 | Koizumi et al. | Apr 2005 | B2 |
6890218 | Patwardhan et al. | May 2005 | B2 |
6899158 | Matuura et al. | May 2005 | B2 |
6932917 | Golden et al. | Aug 2005 | B2 |
7066235 | Huang | Jun 2006 | B2 |
20020084156 | Ballinger et al. | Jul 2002 | A1 |
20020104721 | Schaus et al. | Aug 2002 | A1 |
20030037999 | Tanaka et al. | Feb 2003 | A1 |
20030127297 | Smith et al. | Jul 2003 | A1 |
20030141154 | Rancourt et al. | Jul 2003 | A1 |
20030213658 | Baba | Nov 2003 | A1 |
20040031581 | Herreid et al. | Feb 2004 | A1 |
20040045692 | Redemske | Mar 2004 | A1 |
20040074712 | Quaglia et al. | Apr 2004 | A1 |
20040084260 | Hoyte et al. | May 2004 | A1 |
20040242363 | Kohno et al. | Dec 2004 | A1 |
20050011628 | Frait et al. | Jan 2005 | A1 |
20050150222 | Kalish et al. | Jul 2005 | A1 |
20050183909 | Rau, III et al. | Aug 2005 | A1 |
20050193976 | Suzuki et al. | Sep 2005 | A1 |
20060076200 | Dessouki et al. | Apr 2006 | A1 |
20060243547 | Keller | Nov 2006 | A1 |
20070142149 | Kleber | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
200510113784.X | Oct 2005 | CN |
24 46 938 | Apr 1976 | DE |
25 37 038 | Mar 1977 | DE |
199 48 009 | Mar 2001 | DE |
101 41 698 | Mar 2003 | DE |
102005048258.9 | Oct 2005 | DE |
0 205 713 | Dec 1986 | EP |
1230 274 | Apr 1971 | GB |
2 328 952 | Mar 1999 | GB |
57154533 | Sep 1982 | JP |
WO 9823877 | Jun 1998 | WO |
WO 0136836 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070062664 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60718945 | Sep 2005 | US |