The field to which the disclosure generally relates includes a part with an insert providing frictional damping and method of manufacturing thereof.
Parts subjected to vibration may produce unwanted or undesirable vibrations. Similarly, a part or component may be set into motion at an undesirable frequency and/or amplitude and for a prolonged period. For example, parts such as brake rotors, brackets, pulleys, brake drums, transmission housings, gears, and other parts may contribute to noise that gets transmitted to the passenger compartment of a vehicle. In an effort to reduce the generation of this noise and thereby its transmission into the passenger compartment, a variety of techniques have been employed, including the use of polymer coatings on engine parts, sound absorbing barriers, and laminated panels having viscoelastic layers. The undesirable vibrations in parts or components may occur in a variety of other products including, but not limited to, sporting equipment, household appliances, manufacturing equipment such as lathes, milling/grinding/drilling machines, earth moving equipment, other nonautomotive components, and components that are subject to dynamic loads and vibration. These components can be manufactured through a variety of means including casting, machining, forging, die-casting, etc.
One embodiment of the invention provides a method including positioning an insert in a vertical mold including a first mold portion and a second mold portion; and casting a material including a metal around at least a portion of the insert.
Other exemplary embodiments of the invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while disclosing exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Exemplary embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
In one embodiment, a method is provided for manufacturing a part or product 500 with an insert 10 for damping, for example noise damping or simply vibration damping. The part 500 into which the insert 10 is incorporated may comprise any part 500 that could benefit from damping, for example, but not limited to, one of a brake rotor, bracket, pulley, brake drum, transmission housing, gear, motor housing, shaft, bearing, engine, baseball bat, lathe machine, milling machine, drilling machine, or grinding machine. In one embodiment, the method includes a vertical casting process. In the vertical casting embodiment, the insert 10 may rest on and be supported by a mold along a side edge of the insert 10. In another embodiment, the method includes a horizontal casting process. In various other embodiments, the method includes a casting process performed at any suitable angle.
In one embodiment, the vertical casting process includes designing an insert 10 for a particular part 500. The insert 10 may take any shape. In one embodiment shown in
In one embodiment, the insert 10 may include at least one tab 18. Such a tab 18 may extend from at least one of the inner edge 14 or the outer edge 16 of the annular body 12. The thickness of the tab 18 may be such that a first mold portion 11 (shown in
One embodiment of the invention may include a process including blank stamping of the insert 10. In one embodiment, the insert 10 includes the at least one tab 18 and a portion of the tabs 18 are then bent to form a bent tab portion 28, as shown in
In one embodiment the insert 10 includes a non-wettable surface that prevents molten metal from bonding to the insert 10 surface. In one embodiment the non-wettable surface may be provided by a layer 520 of particles 514, flakes, or fibers, as will be described in greater detail hereafter. In one embodiment, the layer 520 may be a coating including a binder and the particles 514, flakes, or fibers over the insert 10, or at least a portion of the insert 10 may be otherwise treated so that molten metal does not wet that portion of the insert 10 and bond thereto upon solidification of the molten metal.
One embodiment of the invention may include pre-treating the insert 10 prior to forming the coating over the insert. The pre-treating of the insert 10 may comprise at least one of sand blasting, grit blasting, glass bead blasting, chemical washing, or water jet degreasing. The pre-treating of the insert 10 may result in an abrasive surface on the insert 10. In one embodiment, the pre-treating may also include a chemical cleaning to remove oxides and other surface oils prior to the coating application. In one embodiment, the insert 10 may then be pre-heated prior to coating the insert 10. The insert 10 may be pre-heated to a temperature of about 50° C. to about 250° C. In one embodiment the insert 10 may be pre-heated to a temperature of about 75° C. For example, the insert 10 may travel through an oven to heat the insert 10. Pre-heating the insert 10 may promote the subsequent adhesion of the coating to the insert during the coating process.
In one embodiment, the insert 10 may include a coating 520 (as shown in
In one embodiment, the insert 10 with the coating 520 is then baked. In various embodiments, the bake time and temperature may vary depending on the type of coating 520. For example, in one embodiment the insert may be baked and cured for 20 minutes at a temperature of 140° C. In another embodiment, the insert may be baked for at least two hours at 350° C. Then the insert may be packaged for transportation to the molding line. The packaging may include any suitable packaging to protect the insert 10 so that the coating is not damaged.
Referring to
In one embodiment, the setting fixture 30 is then used to load the insert 10 into one portion of the mold 15. The ejector pins 34 may be required to push the insert 10 free when the insert is set in the sand mold 15. In one embodiment, a relief of 3.0 mm on the outside of the tab may be required to accommodate the expansion of the insert material, for example steel, during casting. The bent tab portion 28 allows the insert 10 to be attached to the first mold portion 11, for example, so that the bent tab portion 28 engages a lip of the first mold portion 11 so that the insert 10 hangs, is supported, or is attached to the first mold portion 11 prior to closing the mold 15. Referring to
After the insert 10 is set in the first mold portion 11 of the mold 15, the first mold portion 11 and the second mold portion 13 (not shown) of the mold 15 may be closed together. Then the mold 15 containing the insert 10 may be moved to a pouring station. The pour rate of material into the mold 15 and the amount of inoculants may then be set. Then the material may be poured into the mold to form the part 500. In one embodiment, the material may be, for example but is not limited to, cast iron molten metal. Referring to
Then the mold 15 may continue down the line and cool. The cooling may include exposure to air, or it may include an active means of cooling such as, for example, a fan. The part 500 may then be removed from the mold 15 and allowed to cool further. In one embodiment, the part 500 may then be shot blasted to remove any remaining particles, for example sand, from the mold. In one embodiment, the part 500 may then be inspected for defects. The protruding tabs 18 may be machined off. In one embodiment, the part 500 may be machined further.
Referring to
According to various illustrative embodiments of the invention, frictional damping may be achieved by the movement of the frictional surfaces 502 against each other. The movement of frictional surfaces 502 against each other may include the movement of: surfaces of a body 506 of the part against each other; a surface of the body 506 of the part against a surface of the insert 10; a surface of the body 506 of the part against the layer 520; a surface of the insert 10 against the layer 520; a surface of the body 506 of the part against the particles 514, flakes, or fibers; a surface of the insert 10 against the particles 514, flakes, or fibers; or by frictional movement of the particles 514, flakes, or fibers against each other or against remaining binder material.
In embodiments wherein the frictional surface 502 is provided as a surface of the body 506 or the insert 10 or a layer 520 over one of the same, the frictional surface 502 may have a minimal area over which frictional contact may occur that may extend in a first direction a minimum distance of 0.1 mm and/or may extend in a second (generally traverse) direction a minimum distance of 0.1 mm. In one embodiment the insert 10 may be an annular body and the area of frictional contact on a frictional surface 502 may extend in an annular direction a distance ranging from about 20 mm to about 1000 mm and in a transverse direction ranging from about 10 mm to about 75 mm. The frictional surface 502 may be provided in a variety of embodiments, for example, as illustrated in
Referring again to
As shown in
In another embodiment of the invention the damping means or frictional surface 502 may be provided by particles 514, flakes, or fibers provided on at least one face of the insert 10 or a surface of the body 506 of the part 500. The particles 514, flakes, or fibers may have an irregular shape (e.g., not smooth) to enhance frictional damping, as illustrated in
In embodiments wherein at least a portion of the part 500 is manufactured such that the insert 10 and/or the particles 514, flakes, or fibers are exposed to the temperature of a molten material such as in casting, the insert 10 and/or particles 514, flakes, or fibers may be made from materials capable of resisting flow or resisting significant erosion during the manufacturing. For example, the insert 10 and/or the particles 514, flakes, or fibers may include refractory materials capable of resisting flow or that do not significantly erode at temperatures above 600° C., above 1300° C., or above 1500° C. When molten material, such as metal, is cast around the insert 10 and/or the particles 514, flakes, or fibers, the insert 10 or the particles 514, flakes, or fibers should not be wet by the molten material so that the molten material does not bond to the insert 10 or layer 520 at locations wherein a frictional surface 502 for providing frictional damping is desired.
Illustrative examples of suitable particles 514, flakes, or fibers include, but are not limited to, particles, flakes, or fibers including silica, alumina, graphite with clay, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), phyllosilicates, or other high-temperature-resistant particles, flakes, or fibers. In one embodiment of the invention the particles 514, flakes, or fibers may have a length along the longest dimension thereof ranging from about 1 μm-500 μm, or 10 μm-250 μm.
In another embodiment of the invention, the layer 520 may be a coating over the body 506 of the part or the insert 10. The coating may include a plurality of particles 514, flakes, or fibers which may be bonded to each other and/or to the surface of the body 506 of the part or the insert 10 by an inorganic or organic binder 516 (
In another embodiment, the coating may include at least one of alumina or silica particles, mixed with a lignosulfonate binder, cristobalite (SiO2), quartz, or calcium lignosulfonate. The calcium lignosulfonate may serve as a binder. In one embodiment, the coating may include IronKote. In one embodiment, a liquid coating may be deposited on a portion of the insert and may include high temperature Ladle Kote 310B. In another embodiment, the coating may include at least one of clay, Al2O3, SiO2, a graphite and clay mixture, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), or phyllosilicates. In one embodiment, the coating may comprise a fiber such as ceramic or mineral fibers.
When the layer 520 including particles 514, flakes, or fibers is provided over the insert 10 or the body 506 of the part the thickness L (
In yet another embodiment of the invention the particles 514, flakes, or fibers may be temporarily held together and/or to the surface of the insert 10 by a fully or partially sacrificial coating. The sacrificial coating may be consumed by molten metal or burnt off when metal is cast around or over the insert 10. The particles 514, flakes, or fibers are left behind trapped between the body 506 of the cast part and the insert 10 to provide a layer 520 consisting of the particles 514, flakes, or fibers or consisting essentially of the particles 514, flakes, or fibers.
The layer 520 may be provided over the entire insert 10 or only over a portion thereof. In one embodiment of the invention the insert 10 may include a tab 534 (
In one embodiment of the invention at least a portion of the insert 10 is treated or the properties of the insert 10 are such that molten metal will not wet or bond to that portion of the insert 10 upon solidification of the molten metal. According to one embodiment of the invention at least one of the body 506 of the part or the insert 10 includes a metal, for example, but not limited to, aluminum, steel, stainless steel, cast iron, any of a variety of other alloys, or metal matrix composite including abrasive particles. In one embodiment of the invention the insert 10 may include a material such as a metal having a higher melting point than the melting point of the molten material being cast around a portion thereof.
In one embodiment the insert 10 may have a minimum average thickness of 0.2 mm and/or a minimum width of 0.1 mm and/or a minimum length of 0.1 mm. In another embodiment the insert 10 may have a minimum average thickness of 0.2 mm and/or a minimum width of 2 mm and/or a minimum length of 5 mm. In other embodiments the insert 10 may have a thickness ranging from about 0.1-20 mm, 0.1-6.0 mm, or 1.0-2.5 mm, or ranges therebetween.
Referring now to
In other embodiments of the invention improvements in the frictional damping may be achieved by adjusting the thickness (L, as shown in
In one embodiment the insert 10 is not pre-loaded or under pre-tension or held in place by tension. In one embodiment the insert 10 is not a spring. Another embodiment of the invention includes a process of casting a material comprising a metal around an insert 10 with the proviso that the frictional surface 502 portion of the insert used to provide frictional damping is not captured and enclosed by a sand core that is placed in the casting mold. In various embodiments the insert 10 or the layer 520 includes at least one frictional surface 502 or two opposite friction surfaces 502 that are completely enclosed by the body 506 of the part. In another embodiment the layer 520 including the particles 514, flakes, or fibers that may be completely enclosed by the body 506 of the part or completely enclosed by the body 506 and the insert 10, and wherein at least one of the body 506 or the insert 10 comprises a metal or consists essentially of a metal. In one embodiment of the invention the layer 520 and/or insert 10 does not include or is not carbon paper or cloth.
Referring again to
Referring to
In another embodiment the insert 10 includes a tab 534 which may be formed by machining a portion of the first face 522 of the insert 10 (
Referring now to
Referring to
Referring now to
Referring now to
When the term “over,” “overlying,” “overlies,” “under,” “underlying,” or “underlies” is used herein to describe the relative position of a first layer or component with respect to a second layer or component such shall mean the first layer or component is directly on and in direct contact with the second layer or component or that additional layers or components may be interposed between the first layer or component and the second layer or component.
The above description of embodiments of the invention is merely exemplary in nature and, thus, variations thereof are not to be regarded as a departure from the spirit and scope of the invention.
This application is a divisional application of U.S. application Ser. No. 12/174,223 filed Jul. 16, 2008 and claims the benefit of U.S. application Ser. No. 13/113,619 filed May 23, 2011, U.S. application Ser. No. 13/113,636 filed May 23, 2011 and Provisional Application No. 60/950,906 filed Jul. 20, 2007.
Number | Name | Date | Kind |
---|---|---|---|
1989211 | Norton | Jan 1935 | A |
2603316 | Pierce | Jul 1952 | A |
3085391 | Hatfield et al. | Apr 1963 | A |
3147828 | Hunsaker | Sep 1964 | A |
3191252 | Webbere | Jun 1965 | A |
3292746 | Robinette | Dec 1966 | A |
3378115 | Stephens, III | Apr 1968 | A |
3425523 | Robinette | Feb 1969 | A |
3509973 | Kimata | May 1970 | A |
3575270 | Wagenfuhrer et al. | Apr 1971 | A |
3672437 | Bennett | Jun 1972 | A |
3774472 | Mitchell | Nov 1973 | A |
3841448 | Norton, Jr. | Oct 1974 | A |
3847204 | Frederickson | Nov 1974 | A |
3975894 | Suzuki | Aug 1976 | A |
4049085 | Blunier | Sep 1977 | A |
4072219 | Hahm et al. | Feb 1978 | A |
4140171 | Michelson | Feb 1979 | A |
4250950 | Buxmann et al. | Feb 1981 | A |
4273182 | Winterhalter et al. | Jun 1981 | A |
4379501 | Hagiwara et al. | Apr 1983 | A |
4475634 | Flaim et al. | Oct 1984 | A |
4523666 | Murray | Jun 1985 | A |
4651799 | Chandley | Mar 1987 | A |
4905299 | Ferraiuolo et al. | Feb 1990 | A |
4997024 | Cole et al. | Mar 1991 | A |
5004078 | Oono et al. | Apr 1991 | A |
5025547 | Sheu et al. | Jun 1991 | A |
5083643 | Hummel et al. | Jan 1992 | A |
5115891 | Raitzer et al. | May 1992 | A |
5139117 | Melinat | Aug 1992 | A |
5143184 | Snyder et al. | Sep 1992 | A |
5183632 | Kiuchi et al. | Feb 1993 | A |
5259486 | Deane | Nov 1993 | A |
5263533 | Druschitz et al. | Nov 1993 | A |
5310025 | Anderson | May 1994 | A |
5348073 | Kubo et al. | Sep 1994 | A |
5416962 | Passarella | May 1995 | A |
5417313 | Matsuzaki et al. | May 1995 | A |
5509510 | Ihm | Apr 1996 | A |
5530213 | Hartsock et al. | Jun 1996 | A |
5582231 | Siak et al. | Dec 1996 | A |
5620042 | Ihm | Apr 1997 | A |
5660251 | Nishizawa et al. | Aug 1997 | A |
5789066 | DeMare et al. | Aug 1998 | A |
5800759 | Yamazaki et al. | Sep 1998 | A |
5819882 | Reynolds et al. | Oct 1998 | A |
5855257 | Wickert et al. | Jan 1999 | A |
5862892 | Conley | Jan 1999 | A |
5878843 | Saum | Mar 1999 | A |
5927447 | Dickerson | Jul 1999 | A |
6047794 | Nishizawa | Apr 2000 | A |
6073735 | Botsch et al. | Jun 2000 | A |
6206150 | Hill | Mar 2001 | B1 |
6216827 | Ichiba et al. | Apr 2001 | B1 |
6223866 | Giacomazza | May 2001 | B1 |
6241055 | Daudi | Jun 2001 | B1 |
6241056 | Cullen et al. | Jun 2001 | B1 |
6257310 | Janko | Jul 2001 | B1 |
6283258 | Chen et al. | Sep 2001 | B1 |
6302246 | Naumann et al. | Oct 2001 | B1 |
6343642 | Miki | Feb 2002 | B1 |
6357557 | DiPonio | Mar 2002 | B1 |
6405839 | Ballinger et al. | Jun 2002 | B1 |
6465110 | Boss et al. | Oct 2002 | B1 |
6481545 | Yano et al. | Nov 2002 | B1 |
6484790 | Myers et al. | Nov 2002 | B1 |
6505716 | Daudi et al. | Jan 2003 | B1 |
6507716 | Nomura et al. | Jan 2003 | B2 |
6543518 | Bend et al. | Apr 2003 | B1 |
6758532 | Rhee | Jul 2004 | B2 |
6799664 | Connolly | Oct 2004 | B1 |
6860315 | Williamson | Mar 2005 | B2 |
6880681 | Koizumi et al. | Apr 2005 | B2 |
6890218 | Patwardhan et al. | May 2005 | B2 |
6899158 | Matuura et al. | May 2005 | B2 |
6932917 | Golden et al. | Aug 2005 | B2 |
7013947 | Stahl, Jr. et al. | Mar 2006 | B1 |
7066235 | Huang | Jun 2006 | B2 |
7231955 | Bullied et al. | Jun 2007 | B1 |
7644750 | Schroth et al. | Jan 2010 | B2 |
7775332 | Hanna et al. | Aug 2010 | B2 |
7937819 | Hanna et al. | May 2011 | B2 |
8245758 | Hanna et al. | Aug 2012 | B2 |
20020005233 | Schirra et al. | Jan 2002 | A1 |
20020084156 | Ballinger et al. | Jul 2002 | A1 |
20020104721 | Schaus et al. | Aug 2002 | A1 |
20030037999 | Tanaka et al. | Feb 2003 | A1 |
20030127297 | Smith et al. | Jul 2003 | A1 |
20030141154 | Rancourt et al. | Jul 2003 | A1 |
20030213658 | Baba | Nov 2003 | A1 |
20040011499 | Knudsen | Jan 2004 | A1 |
20040020626 | Ban et al. | Feb 2004 | A1 |
20040031581 | Herreid et al. | Feb 2004 | A1 |
20040045692 | Redemske | Mar 2004 | A1 |
20040074712 | Quaglia et al. | Apr 2004 | A1 |
20040084260 | Hoyte et al. | May 2004 | A1 |
20040242363 | Kohno et al. | Dec 2004 | A1 |
20050011628 | Frait et al. | Jan 2005 | A1 |
20050150222 | Kalish et al. | Jul 2005 | A1 |
20050183909 | Rau, III et al. | Aug 2005 | A1 |
20050193976 | Suzuki et al. | Sep 2005 | A1 |
20050274478 | Verner et al. | Dec 2005 | A1 |
20060076200 | Dessouki et al. | Apr 2006 | A1 |
20060243547 | Keller | Nov 2006 | A1 |
20070044936 | Memmen | Mar 2007 | A1 |
20070062768 | Hanna et al. | Mar 2007 | A1 |
20070084582 | Govern et al. | Apr 2007 | A1 |
20070142149 | Kleber | Jun 2007 | A1 |
20070213868 | MacDonald et al. | Sep 2007 | A1 |
20070261814 | Luczak | Nov 2007 | A1 |
20070284073 | Vogt et al. | Dec 2007 | A1 |
20080131285 | Albert et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
1757948 | Apr 2006 | CN |
2446938 | Apr 1976 | DE |
2537038 | Mar 1977 | DE |
19948009 | Mar 2001 | DE |
10141698 | Mar 2003 | DE |
102005048258 | Apr 2006 | DE |
0205713 | Dec 1986 | EP |
1230274 | Apr 1971 | GB |
2328952 | Mar 1999 | GB |
57154533 | Sep 1982 | JP |
9823877 | Jun 1998 | WO |
0136836 | May 2001 | WO |
Entry |
---|
Random House Webster's unabridged Dictionary Second Edition, copyright 2001, Random House Reference, New York, 3 pages. |
Sachdev et al., U.S. Appl. No. 11/832,356, Friction welding method and products made using the same , filed Aug. 1, 2007. |
Dessouki et al. , U.S. Appl. No. 12/178,872, Friction damped brake drum, filed Jul. 24, 2008. |
Lowe et al. , U.S. Appl. No. 12/174,320 , Damped part with insert, filed Jul. 16, 2008. |
Hanna et al. , U.S. Appl. No. 12/145,169 ,Damped product with an insert having a layer including graphite thereon and methods of making and using the same, filed Jun. 24, 2008. |
Hanna et al. , U.S. Appl. No. 12/272,164 , Surface configurations for damping inserts, filed Nov. 17, 2008. |
Ulicny et al. , U.S. Appl. No. 12/105,438, Filler material to dampen vibrating components, filed Apr. 18, 2008. |
Carter , U.S. Appl. No. 11/680,179, Damped automotive components with cast in place inserts and method of making the same, filed Feb. 28, 2007. |
Hanna et al. , U.S. Appl. No. 11/440,893, Rotor assembly and method, filed May 25, 2006. |
Golden et al. , U.S. Appl. No. 12/105,411, Insert with filler to dampen vibrating components, filed Apr. 18, 2008. |
Hanna et al. , U.S. Appl. No. 12/183,104, Low mass multi-piece sound damped article, filed Jul. 31, 2008. |
Hanna et al., U.S. Appl. No. 12/183,180 , Casting noise-damped, vented brake rotors with embedded inserts, filed Jul. 31, 2008. |
Hanna et al., U.S. Appl. No. 12/174,163, Damped part, filed Jul. 16, 2008. |
Agarwal et al., U.S. Appl. No. 11/860,049, Insert with tabs and damped products and methods of making the same, filed Sep. 24, 2007. |
Hanna et al., U.S. Appl. No. 12/165,731, Product with metallic foam and method of manufacturing the same, filed Jul. 1, 2008. |
Hanna et al. , U.S. Appl. No. 12/165,729, Method for securing an insert in the manufacture of a damped part, filed Jul. 1, 2008. |
Aase et al., U.S. Appl. No. 11/969,259, Method of forming casting with frictional damping insert, filed Jan. 4, 2008. |
Hanna et al., U.S. Appl. No. 11/780,679, Method of manufacturing a damped part, filed Jul. 20, 2007. |
Hanna et al., U.S. Appl. No. 11/832,401,Damped product with insert and method of making the same, filed Aug. 1, 2007. |
Hanna et al., U.S. Appl. No. 11/554,234,Coulomb damped disc brake rotor and method of manufacturing, filed Oct. 30, 2006. |
Hanna et al. , U.S. Appl. No. 11/440,916, Bi-metal disc brake rotor and method of manufacture, filed May 25, 2006. |
Schroth et al., U.S. Appl. No. 12/025,967 ,Damped products and methods of making and using the same, filed Feb. 5, 2008. |
Schroth et al. , U.S. Appl. No. 11/475,759, Method of casting components with inserts for noise reduction, filed Jun. 27, 2006. |
Hanna et al. , U.S. Appl. No. 11/475,756 , Bi-metal disc brake rotor and method of manufacturing, filed Jul. 27, 2006. |
Dessouki et al., U.S. Appl. No. 10/961,813, Coulumb friction damped disc brake rotors , filed Oct. 8, 2004. |
Walker et al. , U.S. Appl. No. 11/926,798, Inserts with holes for damped products and methods of making and using the same, filed Oct. 29, 2007. |
International Search Report dated Apr. 2, 2007 for International Application No. PCT US06/29687, Publication No. WO2007/040768; GM Global Technology Operations , Inc. |
Omar Dessouki, George Drake, Brent Lowe, Wen Kuei Chang,General Motors Corp.:Disc Brake Squeal: Diagnoses and Prevention. 03NVC-224; Society of Automotive Engineer, Inc. 2002. |
Z.Wu, C. Richter ,L. Menon, A Study of Anodization Process During Pore Formation in Nanoporous Alumina Templates, Journal of the Electrochemical Society, vol. 154 , 2007. |
W. J . Lee, M. Alhoshan, W.H. Smyrl, Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes, Journal of the Electrochemical Society, vol. 153 ,2006, pp. B499-505. |
I.V. Sieber, P. Schmuki , Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation, Journal of the Electrochemical Society, vol. 152, 2005, pp. C639-C644. |
H.Tanaka, A. Shimada, A. Kinoshita, In situ Measurement of the Diameter of Nanopores in Silicon During Anodization in Hydrofluoric Acid solution, Journal of Electrochemic, 2004. |
L.G. Hector, Jr., S. Sheu, Focused Energy Beam Work Roll Surface Texturing Science and Technology, Journal of Materials Processing & Manufacturing Science, vol. 2, Jul. 1993. |
P.N. Anyalebechi, Ungrooved Mold surface Toporaphy Effects on Cast Subsurface Microstructure, Materials Processing Fundamentals, TMS 2007, pp. 49-62. |
F.Yigit, Critical Wavelengths for Gap Nucleation in Solidification—Part 1: Theoretical Methodology , Journal of Applied Mechanics , vol. 67, Mar. 2000, pp. 66-76. |
P.N. Anyalebechi, Undulatory Solid Shell Growth of Aluminum Alloy 3003 as a Function of the Wavelength of a Grooved Mold Surface Topography, TMS 2007, pp. 31-47. |
PCT/US2009/039839 Written Opinion; 4 pages; Mail date Nov. 24, 2009. |
Number | Date | Country | |
---|---|---|---|
20140246162 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
60950906 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12174223 | Jul 2008 | US |
Child | 14277849 | US |