The present application claims priority to Hungarian Patent Application, Serial No. P 02 03993, Filed, Nov. 19, 2002, entitled “OPTICAL SYSTEM FOR A BINOCULAR VIDEO SPECTACLE,” the disclosure of which is hereby incorporated herein by reference.
The invention relates generally to visual displays and more specifically to optical arrangements for head mounted systems that use a single display.
Head Mounted Displays (HMDs) are a class of image display devices that can be used to display images from television, digital versatile discs (DVDs), computer applications, game consoles, or other similar applications. A HMD can be monocular ( a single image viewed by one eye), biocular (a single image viewed by both eyes), or binocular (a different image viewed by each eye). Further, the image projected to the eye(s) may be viewed by the user as complete, or as superimposed on the user's view of the outside world. HMD designs must account for parameters such as image resolution, the distance of the virtual image from the eye, the size of the virtual image (or the angle of the virtual image), the distortions of the virtual image, the distance between the left and the right pupil of the user (inter pupillar distance (IPD)), diopter correction, loss of light from image splitting and transmission, power consumption, weight, and price. Ideally, a single HMD would account for these parameters over a variety of users and be able to display an image regardless of whether it was a stereo binocular image or a simple monoscopic image.
If the resolution of a picture on the HMD's internal display is 800×600 pixels, an acceptable size for the virtual image produced by the HMD's optics is a virtual image diameter of approximately 1.5 m (52″-56″) at 2 m distance which corresponds to approximately a 36° angle of view. To properly conform to the human head and eyes, the IPD should be variable between 45 mm and 75 mm. In order to compensate for near- and farsightedness, at least a ±3 diopter correction is necessary.
The use of only one microdisplay in the HMD (instead of using one for each eye) drastically reduces the price of the device. Typically, an arrangement for such a unit positions a microdisplay between the user's eyes. The image produced is then split, enlarged, and separately transmitted to each eye. There are numerous designs known in the art for beam splitting in single display HMDs with a center mounted display, but none are known that provide a solution that is cheap, light weight, small in size, and capable of displaying all varieties of images.
Embodiments of the present invention present images produced by head mounted displays to a user by producing separate sub-images that are propagated through a plurality of optical sub-paths delivering the image to separate locations. Embodiments of the present invention hold constant the length of each optical sub-path during adjustments by coordinated the movements of the optical elements placed along the sub-paths.
Some embodiments utilize diffusers places in the optical sub-path onto which real images of the display are formed. By coordinating the lateral movement of eyepiece optics necessary to correct for inter-pupilar distances with proportional movement of the diffusers, embodiments of the present invention are thus capable of maintaining a constant length for the optical sub-paths.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized that such equivalent constructions do not depart from the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
In embodiments using the arrangement of section 101, splitter 120 is an asymmetric V-mirror splitter composed of a partially reflective surface 121 and a fully reflective surface 122. The proximity of surfaces 121, 122 will be dependent upon the size of splitter 120 and the amount of splitter volume reduction section 101 is arranged to produce. Section 101 is further arranged so that surface 121 and surface 122 share a common edge, and are arranged asymmetrically about display axis 111. Section 101 can thus split a display image of display 110 into two separate display sub-images. The term sub-image is used to describe the multiple images of a display created by the various embodiments of the present invention. The sub-images of
Upon striking partially reflective surface 121, a portion of a display image is reflected along left-eye optical sub-path 140, and becomes a left-eye sub-image. The portion of a display image not reflected by partially reflective surface 121 passes through and strikes fully reflective surface 122, becoming a right-eye sub-image, which is reflected along right-eye optical sub-path 130. The result is an identical left-eye sub-image and right-eye sub-image traveling in opposite directions and containing identical image information.
Left-eye sub-image will follow optical sub-path 140 and be channeled to left eye 146 of a user. Placed along optical sub-path 140 is left-eye reflector 142, which is a fully reflective surface arranged to redirect left-eye optical sub-path 140 by 90° and into left eyepiece optics 145. The right-eye sub-image will follow optical sub-path 130 and be channeled to right eye 136 of a user. Placed along optical sub-path 130 is right-eye reflector 132, which is a fully reflective surface arranged to redirect right-eye optical sub-path 130 by 90° and into right eyepiece optics 135. Right eyepiece optics 135 and left eyepiece optics 145 can be a single lens or a combination of several lenses designed to appropriately magnify a right-eye sub-image for viewing by right eye 136 of the user and a left-eye sub-image for viewing by left eye 146 of the user, respectively.
Eyepiece optics 135 and 145 are adjustable single lenses, but other embodiments may use multiple lenses or any other arrangement that appropriately focuses a right-eye sub-image and a left-eye sub-image for viewing by right eye 136 and left eye 146, respectively. Further, although reflectors 142, 132 of device 100 are depicted as mirrors, embodiments are not limited to the use of mirrors for redirecting an optical sub-path. Rather, prisms, partially reflective surfaces, polarizing beam splitters, or any other suitable arrangements can be used for redirecting an optical sub-path.
Device 100 is also capable of adjusting for the varying IPDs of different users through the synchronized movements of optical elements. Right eyepiece optics 135 and left eyepiece optics 145 can shift through movements 152 and 151 respectively to create IPD 150a and IPD 150b, when section 101 shifts through movement 155. When IPD distance 150a is changed to IPD 150b, section 101 is simultaneously shifted toward facial plane 170 in movement 155 (downwards in the view of
The embodiment depicted in
In
Device 200 is also capable of IPD adjustment through multiple synchronous movements. IPD 150 can be shortened by shifting left-eye compound optics 234 to the right with movement 251, and right-eye compound optics 235 to the left with movement 252. For the embodiment of
The embodiment depicted in
The embodiment in
Device 300 is capable of IPD adjustment through multiple simultaneous movements. The embodiment of
To allow for diopter correction, ‘baseline’ rack 384 is moved in direction 385 (towards optical axis 111), which in turn moves idler gear 383 and diffuser 333 towards beam splitter 120 (not shown), there by shortening optical sub-path 130 and moving the virtual image closer to the viewer. Rather than focusing the system, the virtual image is moved to the view where a user can see the image within their ‘diopter limits’. The mechanical of
In device 300, left-eye real-image reflector 342 and right-eye real-image reflector 332 are partially reflective surfaces, but embodiments are not limited to the arrangement depicted. Rather, embodiments may easily be adapted to any arrangement, such as those using prisms, or polarizing beam splitters, that appropriately reflect light into eyepiece optics 135 and 145 and transmit light from optical paths 130, 140 towards reflective diffusers 333, 343, respectively.
The embodiments of the present invention are not limited to arrangements that place an image splitter proximate to the focal point of a focusing optic. Rather, embodiments of the present invention are able to reduce the splitting volume of various applications, by positioning the image splitter to split a display image focused in a small area.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Date | Country | Kind |
---|---|---|---|
0203993 | Nov 2002 | HU | national |
The present application is a continuation-in-part of U.S. patent application Ser. No. 10/715,911 entitled “OPTICAL ARRANGEMENTS FOR HEAD MOUNTED DISPLAYS,” filed Nov. 18, 2003 now U.S. Pat. No. 6,989,935, the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3694088 | Gallagher | Sep 1972 | A |
4575722 | Anderson | Mar 1986 | A |
5029261 | Koyama | Jul 1991 | A |
5035474 | Moss et al. | Jul 1991 | A |
5129716 | Holakovszky et al. | Jul 1992 | A |
5392158 | Tosaki | Feb 1995 | A |
5621572 | Fergason | Apr 1997 | A |
5677628 | Watanabe et al. | Oct 1997 | A |
5682173 | Holakovszky et al. | Oct 1997 | A |
5739955 | Marshall | Apr 1998 | A |
5926318 | Hebert | Jul 1999 | A |
6055109 | Hur | Apr 2000 | A |
6094309 | Ophey | Jul 2000 | A |
6111408 | Blades et al. | Aug 2000 | A |
6147805 | Fergason | Nov 2000 | A |
6219186 | Hebert | Apr 2001 | B1 |
6226076 | Yoshida | May 2001 | B1 |
6246383 | Ophey | Jun 2001 | B1 |
6246386 | Perner | Jun 2001 | B1 |
6271808 | Corbin | Aug 2001 | B1 |
6417820 | Choi et al. | Jul 2002 | B1 |
7053865 | Takahashi | May 2006 | B2 |
20020000951 | Richards | Jan 2002 | A1 |
20020080496 | Kaschke et al. | Jun 2002 | A1 |
20030026586 | Bruegl et al. | Feb 2003 | A1 |
20040150888 | Domjan et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
0 252 200 | Jan 1988 | EP |
2332533 | Jun 1999 | GB |
212 134 | Jun 1998 | HU |
216 221 | May 1999 | HU |
5-150182 | Jun 1993 | JP |
06-110014 | Apr 1994 | JP |
06-305342 | Nov 1994 | JP |
10-148789 | Jun 1998 | JP |
11-295645 | Oct 1999 | JP |
2000-284215 | Oct 2000 | JP |
107668 | Nov 1958 | SU |
175525 | Dec 1991 | TW |
291987 | Nov 1996 | TW |
567341 | Dec 2003 | TW |
WO 8504961 | Nov 1985 | WO |
WO 9931543 | Jun 1999 | WO |
WO 0000119 | Jan 2000 | WO |
WO 0159507 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060132925 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10715911 | Nov 2003 | US |
Child | 11284759 | US |