Method of cleaning membrane modules

Information

  • Patent Grant
  • 8512568
  • Patent Number
    8,512,568
  • Date Filed
    Thursday, May 14, 2009
    15 years ago
  • Date Issued
    Tuesday, August 20, 2013
    11 years ago
Abstract
A method of cleaning a membrane filtration module (6), the module (6) including at least one membrane (8) located in a feed-containing vessel (7), the membrane (8) having a permeable wall which is subjected to a filtration operation wherein feed containing contaminant matter is applied to one side of the membrane wall and filtrate is withdrawn from the other side of the membrane wall. The method comprising the steps of: suspending the filtration operation; performing a cleaning process on the membrane wall to dislodge contaminant matter therefrom into liquid surrounding the membrane (8); performing a high velocity sweep of the feed-containing vessel (7) to remove the liquid containing the dislodged contaminant matter; and recommencing the filtration operation. An improved gas scouring method is also disclosed.
Description
FIELD OF THE INVENTION

The present invention relates to membrane filtration systems and, more particularly, to a method and apparatus for improving the filtration efficiency of such systems by providing an improved cleaning system for the membranes.


BACKGROUND ART

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.


In a membrane filtration process, the method used to physically clean membranes is of vital importance. An efficient membrane cleaning strategy can maintain a stable permeability of the membrane and reduce the frequency of chemical cleans. A commonly used method to physically clean membranes is a backwash (also called “backflush” or “backpulse”) with the permeate/filtrate or a gas. The backwash method is typically used to eject solids blocking the membrane pores and partly dislodge the cake that may have formed on the membrane surface.


Backwash with pressurized gas has proved a very efficient cleaning method and is now widely used in the field of microfiltration processes. The limitation to this method is the membrane pore size. Backwash of membranes with permeate has no limitations to the pore size, but the backwash efficiency is generally lower than gas backwash and the transmembrane pressure (TMP) recovery not enough to offset the fouling rate. Further means are employed to enhance the backwash efficiency, such as dosing chemicals to the backwash permeate, or in combination with gas scrubbing.


Maruyama et al in Japanese Patent No. JP2031200 discloses a hollow fibre membrane backwashing method. The method involves the following sequence: stop filtration, air-scour membrane, fill the membrane vessel, backwash with permeate under pressurized air and drain the waste. This procedure is repeated to achieve a higher efficiency. Sunaoka et al in a U.S. Pat. No. 5,209,852 describes a process for scrubbing hollow fibre membranes in modules. This process is composed of a two-stage air scrubbing and draining to clean the membranes.


A lot of effort has been made to more effectively lift solids accumulated on the membrane surface and in the pores by optimising the backwash pressure and enhancing the air scrubbing efficiency. Another important step to achieve an efficient cleaning, which has been largely ignored, is the removal of solids that have been exfoliated off the membrane, from the membrane modules. The typical methods presently used are by draining down of the waste or by feed-and-bleed. Feed and bleed involves continual bleeding of waste containing feed out of the filtration system. The outcome is the accumulation of solids within the modules, particularly towards the two ends of a module and the effect becomes more serious if the membranes are densely packed in a module.


DISCLOSURE OF THE INVENTION

It is an object of the present invention to overcome or at least ameliorate one or more of the disadvantages of the prior art outlined above or at least provide a useful alternative.


According to one aspect, the present invention provides a method of cleaning a membrane filtration module, said module including at least one membrane located in a feed-containing vessel, the membrane having a permeable wall which is subjected to a filtration operation wherein feed containing contaminant matter is applied to one side of the membrane wall and filtrate is withdrawn from the other side of the membrane wall, the method comprising the steps of:


a) suspending the filtration operation;


b) performing a cleaning process on the membrane wall to dislodge contaminant matter therefrom into liquid surrounding the membrane;


c) performing a high velocity sweep of the feed-containing vessel to remove the liquid containing the dislodged contaminant matter; and


d) recommencing the filtration operation.


Preferably, the cleaning process of step b) includes a fluid backwash of the membrane pores. For preference, the fluid backwash includes a liquid and/or gas backwash. For further preference, the cleaning process includes gas scrubbing of the surface of the membrane.


Preferably, the sweep of the feed-containing vessel is performed periodically in different directions within the vessel during operation of the cleaning method.


The contaminant matter may include solids, soluble species or other material removed from the feed during the filtration process.





BRIEF DESCRIPTION OF DRAWINGS

Preferred embodiments and examples of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:



FIG. 1 shows a schematic representation of the membrane module assembly according to one embodiment of the invention;



FIGS. 2
a to 2d show schematic representations of the membrane module of FIG. 1 during the membrane cleaning sequence according to the invention;



FIG. 3 shows a graph of transmembrane pressure (TMP) versus time for the module of FIG. 1 illustrating cleaning efficiencies of various backwash regimes;



FIG. 4 shows a graph of transmembrane pressure (TMP) versus time for the module of FIG. 1 illustrating the effect of the high velocity sweep on membrane cleaning;



FIG. 5 shows a schematic representation of a membrane module according to a further embodiment of the present invention; and



FIG. 6 shows a graph of transmembrane pressure (TMP) versus time for the module of FIG. 5 illustrating the effect of the gas injection on scrubbing efficiency.





DESCRIPTION OF PREFERRED EMBODIMENTS AND EXAMPLES

In the preferred embodiments, the membrane cleaning regime may include a combination, in part or in whole, depending on the feed water quality, of one or more backwash methods.


A backwash or blowout, or a combination of both, may be used to dislodge the solids blocking the membrane pores.


The backwash is normally achieved by forcing the permeate in a reverse direction to filtration through the membrane pores. The backwash flow rate is usually in a range of 50-500% of the filtration flow, more commonly in a range of 100-300% of the filtration flow.


Blowout is another method of removing solids from the membrane pores by creating a rapid and explosive decompression within the filtration vessel. In this method, the two sides (feed side and permeate side) of a membrane are firstly pressurized to a specific value. Then the discharge valve on the feed side is opened to generate an instantaneous negative transmembrane pressure (TMP). The solids in membrane pores are then blown out by the instantaneous negative TMP. As described below, in one embodiment, the blowout can also be integrated into a high velocity sweep step.


Another method of removing solids build-up from the membrane walls uses gas scouring to exfoliate the membrane surface. This method uses gas bubbles moving past the membrane surface to achieve an efficient scrubbing. Gas scouring is widely used in the membrane filtration processes where suction is applied to the permeate side of the membrane wall to induce filtration. For the pressurized membrane filtration systems, gas scrubbing is achieved by injecting gas, usually air, into the bottom end of the membrane module while the permeate is withdrawn from the upper end, as described in Japanese Patent No. JP2031200 and U.S. Pat. No. 5,209,852.


After the backwash step, the solids removed from the membranes are normally removed from modules by draindown of the waste. The velocity during a normal draindown is limited by the gravity force on the liquid within the vessel. The shear force thus generated is weak and may not be high enough to flush accumulated solids out of the modules and/or strip solids off the surface of the membrane. The situation is more manifest in hollow fibre membrane modules having a high fibre packing density.


Referring to FIGS. 1 and 2, a preferred embodiment of one form of module cleaning will be described.



FIG. 1 illustrates a membrane module assembly 5. A hollow fibre membrane module 6 is located in a vessel 7. The module 6, in this example, contains a plurality of porous hollow fibre membranes 8, the ends the fibres opening into respective upper and lower permeate collection headers 9 and 10. Filtration takes place by applying feed to the outer wall of the fibres and withdrawing permeate through the fibre lumens. Filtrate/permeate is removed from both ends of the module 6 through ports 11 and 12 connected to headers 9 and 10 respectively. Feed inlet ports 13 and 14 and waste discharge ports 15 and 16 are provided at the upper and lower ends of the vessel 7, respectively. Valves AV1 and AV2 control the flow of feed to ports 13 and 14 while valves AV8 and AV5 control the flow of scouring gas. The flow of filtrate or permeate from the headers 9 and 10 is controlled by valves AV3 and AV4 while backwash flow to these headers is controlled by valves AV7 and AV4. Valves AV5 and AV6 control waste discharge from ports 15 and 16.


The steps of the process will now be described with reference to FIGS. 2a to 2d.


Step 1. Filtration. During a typical dead-end filtration process, valves AV1-4 are open. The raw feed water is fed via valves AV1 and AV2 entering the upper and lower inlet ports 13 and 14 while the permeate is withdrawn from the top and bottom ports 11 and 12 of the module 6 (as best shown in FIG. 2(a)).


Step 2. Air scouring. At the end of the filtration step, valves AV1-4 are closed, and then the upper discharge valve AV5 and the gas inlet valve AV8 are open. Gas (usually air) is then introduced into the module 6 through valve AV8 and the lower port 14 to scour the membrane as illustrated in FIG. 2(b).


Step 3. Pressurization via backwash. When the gas scouring stops, valves AV5 and AV8 are closed. The vessel 7 is left partly filled with gas and water. A permeate backwash is initiated by opening valves AV4 and AV7. The pressure in the vessel 7 gradually increases during the backwash to pressurize the remaining gas within the vessel 7 (see FIG. 2(c)) and finally the pressure on both sides of the membrane walls equalizes. A pressurized gas pocket is thus formed within the vessel 7.


Another way to create such a gas pocket is to drain down or partly drain down the liquid waste at the end of the filtration Step 1 or after the gas scouring in Step 2. In this case it takes longer time to pressurize the gas, and consumes more permeate, but will achieve a higher average sweep velocity. The sweep velocity is desirably greater than 0.03 m/sec and preferably in the range 0.3 m/sec to 2.0 m/sec.


Step 4. Blowout and high velocity sweep down (FIG. 2(d)). When the pressure on the permeate side approaches that on the feed side of the membrane wall, which is also the maximum discharge pressure of the backwash pump, valve AV6 is opened. An instantaneous negative TMP is generated across the membrane wall, which achieves a second backwash of the membrane pores. Simultaneously, the high-pressure gas pocket formed on the feed side rapidly expands and sweeps down the solids out of the membrane module at a high velocity through port 16. The high velocity sweep may also create a high shear force to assist scrubbing the membrane surface. The maximum negative TMP and sweep velocity that can be achieved depend on the resistance in the drain line and the pressure on the permeate side of the membrane. At the end of the fast drain, the backwash pump is stopped and valves AV6 and AV7 are closed. The sequence then returns to the start of filtration.


The process described above generates both a blowout effect and a fast drain-down of the vessel 7. Therefore good cleaning efficiency can be achieved. Other means to achieve a high velocity sweep may include the use of the feed pump to deliver a sweep flow or employing compressed air/gas applied to the vessel housing the module or an external vessel, to achieve a high velocity sweep. An external vessel may be used where formation of a pressurized gas bubble within the feed containing vessel is difficult due to module configuration. In such an arrangement a gas containing region is provided within a further vessel coupled to said feed-containing vessel. The feed-containing vessel and the further vessel are sealed as a whole following said cleaning step and pressure applied to gas within the gas containing region to pressurize said gas, the pressure is then released by opening the feed-containing vessel to atmosphere so as to cause the pressurized gas to expand and produce said high velocity sweep of the feed-containing vessel. An external vessel may also be selectively coupled by a valve to the feed-containing vessel and contain pressurized gas and/or liquid which is released by opening the valve into the feed containing vessel to produce the high velocity sweep.


A further method of achieving a highly efficient sweep is to change the sweep direction (upwards and downwards sweep) from time to time. The times of the sweep in one direction and the frequency of change of the sweep direction depend on the module configuration, feed water quality and the operating conditions of the filtration system.


It will be appreciated that the method of cleaning membranes described above can also be applied to the inside-out filtration process, filtration by suction and other types of membranes, including flat sheet, tubular, spiral wound as well as other configurations.


A number of tests were conducted using different cleaning regimes. These tests are described below.


Example 1
Short Term Tests

A hollow fibre membrane module with a surface area of 33 m2 (based on OD) was installed in a process illustrated in FIG. 1. Filtration was conducted by pressurizing the shell side of the module for 10 minutes and at a flux of 52 L/m2/hr. The feed water quality was poor with a turbidity of 35 NTU. At the end of filtration a membrane cleaning procedure was started. The following cleaning strategies were conducted and the cleaning efficiency is compared in FIG. 3.


Strategy 1: Permeate backwash only. The cleaning protocol involved the permeate backwash only at a flow rate of 3.2 m3/hr and a duration of 15 seconds. Solids were removed by pumping the feed water at a flow rate of 3.5 m3/hr from the lower inlet port and sweeping out of the module through valve AV5 for 38 seconds. The TMP kept rising after each backwash, indicating poor backwash efficiency.


Strategy 2: Air scouring and permeate backwash. The cleaning strategy included a pre-aeration for 15 seconds at an air flow rate of 8 m3/hr and then the permeate backwash similar to Strategy 1 plus a continued aeration for 15 seconds. The solids were removed by the normal sweep as in Strategy 1. The TMP dropped after such cleans and a better cleaning efficiency was achieved.


Strategy 3: High velocity sweep down. The sequence was air scouring for 15 seconds, gravity drain down of waste (5 seconds), permeate backwash with the shell side valves closed till the pressure at the permeate side reached 480 kPa (20 seconds), then opening the drain valve to achieve a blow-out and high velocity sweep down (10 seconds). FIG. 3 shows that such a high velocity sweep-down further recovered TMP and removed the foulant on the membranes. The high velocity sweep not only removed accumulated solids from the module, it also provided further scouring of the membrane surfaces.


Strategy 4: Similar to Strategy 3 with a slightly different time scale: gravity drain for 10 seconds, backwash and pressurization for 30 seconds followed by high velocity sweep down for 5 seconds. Similar effect to Strategy 3 was recorded.


The above strategies were repeated and the results illustrated effectiveness of the high velocity sweep down in removing accumulated solids from module.


Example 2
Extended Test on Effect of High Velocity (HV) Sweep

An extended test was conducted in the same pilot machine and on the same site as in Example 1. The strategy combining air scouring and permeate backwash (Strategy 2 in Example 1) was used to clean the membranes. Fouling of the membrane was reflected in the TMP rise during a constant flux operation process. The TMP change profile was recorded on a data logger device and FIG. 4 illustrates the TMP profile. After three days (October 30-November 2) TMP rose by 5.5 kPa. Then the control program was changed to allow one high velocity sweep (Strategy 4 in Example 1) for every eight-hours of operation. The TMP was quite stable during the next six days and only a rise of 1 kPa was recorded. On November 8, the special high velocity sweep was removed and the TMP increased rapidly without the fast sweep. The extended test again illustrated the effectiveness of the high velocity sweep in cleaning of membranes.


A further aspect of the invention relates to an improved gas scouring method where permeate can be withdrawn from both ends of the module. According to this aspect there is provided a method of cleaning a membrane filtration module, said module including at least one elongate membrane positioned in a feed-containing vessel, the membrane having a permeable wall which is subjected to a filtration operation wherein feed containing contaminant matter is applied to one side of the membrane wall and filtrate is withdrawn from the other side of the membrane wall, the method comprising the steps of:

    • a) suspending the filtration operation;
    • b) dislodging contaminant matter from said membrane wall into liquid surrounding the membrane by flowing gas bubbles along the one side of the membrane wall, said gas bubbles being formed by feeding gas into said feed-containing vessel through an opening therein.
      • Preferably, the opening is positioned laterally of the membrane.


In the prior art gas or air was introduced into the modules via the bottom port and the permeate taken from the top end only. The details of such a module configuration are described in U.S. Pat. No. 6,156,200.


In the above examples 1 and 2, we have shown the introduction of gas into a module when the permeate is withdrawn from both ends. FIG. 5 illustrates the module configuration and the ports for alternative gas injection. In this configuration, port 12 is connected to the gas source via valve AV9 and the backwash line through valve AV4 is removed. Permeate is withdrawn from one end through port 11.


There are two choices of introducing gas into the module 7. The first option is to introduce gas into the bottom pot of the module via port 12. Alternatively gas can be injected via shell side feed port 14. This method allows the application of gas scouring to the situation where the permeate is taken from both ends of a module. FIG. 6 compares the TMP profile by changing the injection of gas into port 12 or 14. Under the same operating conditions, injecting gas into a different port did not produce any significant effect on the gas scrubbing efficiency.


It will be appreciated that further embodiments and exemplifications of the invention are possible with departing from the spirit or scope of the invention described.

Claims
  • 1. A method for cleaning a membrane filtration module, the module comprising at least one membrane located in a feed-containing vessel, the membrane comprising a permeable wall, the method comprising: conducting a filtration operation wherein a feed is applied to a first side of the permeable wall and a filtrate is withdrawn from a second side of the permeable wall;suspending the filtration operation;performing a cleaning process on the permeable wall to dislodge a contaminant therefrom into a liquid surrounding the membrane;forming a gas-containing region on the first side of the permeable wall;sealing the feed-containing vessel;pressurizing a gas within the gas-containing region via a backwash operation;opening a lower valve of the feed-containing vessel to atmosphere when a pressure on the first side of the membrane equals a pressure on the second side of the membrane to generate an instantaneous negative transmembrane pressure, whereby the gas-containing region expands and produces a high velocity sweep of the feed-containing vessel to remove the liquid containing the dislodged contaminant through the lower valve; andsuspending the backwash operation when the high velocity sweep of the feed-containing vessel is complete.
  • 2. The method according to claim 1, wherein the step of performing a cleaning process comprises performing a fluid backwash of the permeable wall.
  • 3. The method according to claim 2, wherein the fluid backwash comprises a liquid backwash.
  • 4. The method according to claim 2, wherein the fluid backwash comprises a gas backwash.
  • 5. The method according to claim 1, wherein a velocity of the high velocity sweep is greater than about 0.03 msec.
  • 6. The method according to claim 1, wherein a velocity of the high velocity sweep is from about 0.3 msec to about 2.0 msec.
  • 7. The method according to claim 1, wherein the step of performing a cleaning process comprises gas scrubbing a surface of the permeable wall.
  • 8. The method according to claim 1, wherein the membrane comprises a hollow fiber membrane, and wherein the filtrate is withdrawn from at least one end of the hollow fiber membrane during the filtration operation.
  • 9. The method according to claim 1, wherein the gas-containing region is formed within the feed-containing vessel.
  • 10. The method according to claim 1, wherein the gas-containing region is formed within a further vessel coupled to the feed-containing vessel; and wherein the step of sealing the feed-containing vessel comprises sealing the feed-containing vessel and the further vessel as a whole.
  • 11. The method according to claim 9, wherein the gas-containing region is formed by partially draining down a feed liquid within the feed-containing vessel.
  • 12. The method according to claim 9, wherein opening the feed-containing vessel comprises applying a fluid backwash to the membrane.
  • 13. The method according to claim 1, wherein the cleaning process on the permeable wall is suspended prior to forming a gas-containing region on the first side of the permeable wall.
  • 14. The method according to claim 1, wherein an elapsed time between suspending the filtration operation and suspending the backwash operation is less than 1 minute.
Priority Claims (1)
Number Date Country Kind
PR6924 Aug 2001 AU national
US Referenced Citations (641)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
511995 Buckley Jan 1894 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3068655 Murray et al. Dec 1962 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3191674 Richardson Jun 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3472168 Inoue et al. Oct 1969 A
3472765 Budd et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Carraro Mar 1970 A
3505215 Bray Apr 1970 A
3556305 Shorr Jan 1971 A
3563860 Henderyckx Feb 1971 A
3591010 Pall et al. Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3654147 Levin Apr 1972 A
3679052 Asper Jul 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hill et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3955998 Clampitt et al. May 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3982095 Robinson Sep 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105556 O'Amaddio et al. Aug 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4157899 Wheaton Jun 1979 A
4183890 Bollinger Jan 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4190419 Bauer Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4272379 Pollock Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4323453 Zampini Apr 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4367140 Wilson Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4371427 Holler et al. Feb 1983 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4467001 Coplan et al. Aug 1984 A
4476015 Schmitt et al. Oct 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Muller Apr 1985 A
4519909 Castro May 1985 A
4539940 Young Sep 1985 A
4540490 Shibata et al. Sep 1985 A
4545862 Gore et al. Oct 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623460 Kuzumoto et al. Nov 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702830 Makino et al. Oct 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4769140 van Dijk et al. Sep 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4800019 Bikson et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4886601 Iwatsuka et al. Dec 1989 A
4888115 Marinaccio et al. Dec 1989 A
4889620 Schmit et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4908114 Ayers Mar 1990 A
4919815 Copa et al. Apr 1990 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4952317 Culkin Aug 1990 A
4963304 Im et al. Oct 1990 A
4966699 Sasaki et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4969997 Kluver et al. Nov 1990 A
4980066 Slegers Dec 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5002666 Matsumoto et al. Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Muller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075044 Augem Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza, Jr. et al. Jan 1992 A
5080770 Culkin Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5102550 Pizzino et al. Apr 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H0001045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5156738 Maxson Oct 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5180407 DeMarco Jan 1993 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5203405 Gentry et al. Apr 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5248424 Cote et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5269919 von Medlin Dec 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5425415 Master et al. Jun 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5482625 Shimizu et al. Jan 1996 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5491023 Tsai et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghavan et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5552047 Oshida et al. Sep 1996 A
5554283 Brinda et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5575963 Soffer et al. Nov 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5626755 Keyser et al. May 1997 A
5629084 Moya May 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5690830 Ohtani et al. Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
5814234 Bower et al. Sep 1998 A
D400890 Gambardella Nov 1998 S
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5846425 Whiteman Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895521 Otsuka et al. Apr 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran et al. Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan et al. Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6024872 Mahendran et al. Feb 2000 A
6036030 Stone et al. Mar 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6071404 Tsui Jun 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6146747 Wang et al. Nov 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6162020 Kondo Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6202475 Selbie et al. Mar 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6245239 Cote et al. Jun 2001 B1
6254773 Biltoft Jul 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6290756 Macheras et al. Sep 2001 B1
6294039 Mahendran et al. Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6319411 Cote Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6324898 Cote et al. Dec 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6331248 Taniguchi et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran et al. Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6375848 Cote et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Groschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6406629 Husain et al. Jun 2002 B1
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6471869 Yanou et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524481 Zha et al. Feb 2003 B2
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6555005 Zha et al. Apr 2003 B1
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6620319 Behmann et al. Sep 2003 B2
6623643 Chisholm et al. Sep 2003 B2
6627082 Del Vecchio et al. Sep 2003 B2
6632358 Suga et al. Oct 2003 B1
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6682652 Mahendran et al. Jan 2004 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706185 Goel et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Guibert et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723242 Ohkata et al. Apr 2004 B1
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6755970 Knappe et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6761826 Bender Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790347 Jeong et al. Sep 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6840251 Gill et al. Jan 2005 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863816 Austin et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Cote Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6872305 Johnson et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884350 Muller Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899812 Cote et al. May 2005 B2
6936085 DeMarco Aug 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6964741 Mahendran et al. Nov 2005 B2
6969465 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowell Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7018533 Johnson et al. Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7122121 Ji Oct 2006 B1
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7160464 Lee et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7279215 Hester et al. Oct 2007 B2
7300022 Muller Nov 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7361274 Lazaredes Apr 2008 B2
7378024 Bartels et al. May 2008 B2
7387723 Jordan Jun 2008 B2
7404896 Muller Jul 2008 B2
7410584 Devine Aug 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7507274 Tonkovich et al. Mar 2009 B2
7510655 Barnes Mar 2009 B2
7531042 Murkute et al. May 2009 B2
7563363 Kuzma Jul 2009 B2
7591950 Zha et al. Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7648634 Probst Jan 2010 B2
7662212 Mullette et al. Feb 2010 B2
7708887 Johnson et al. May 2010 B2
7713413 Barnes May 2010 B2
7718057 Jordan et al. May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan et al. May 2010 B2
7761826 Thanvantri et al. Jul 2010 B1
7819956 Muller Oct 2010 B2
7850851 Zha et al. Dec 2010 B2
7862719 McMahon et al. Jan 2011 B2
7931463 Cox et al. Apr 2011 B2
7938966 Johnson May 2011 B2
20010047962 Zha et al. Dec 2001 A1
20010052494 Cote et al. Dec 2001 A1
20020027111 Ando et al. Mar 2002 A1
20020070157 Yamada Jun 2002 A1
20020117444 Mikkelson et al. Aug 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20020189999 Espenan et al. Dec 2002 A1
20020195390 Zha et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030052055 Akamatsu et al. Mar 2003 A1
20030056919 Beck Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030075495 Dannstrom et al. Apr 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030150807 Bartels et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030178365 Zha et al. Sep 2003 A1
20030196955 Hughes Oct 2003 A1
20030226797 Phelps Dec 2003 A1
20030234221 Johnson et al. Dec 2003 A1
20040007523 Gabon et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040045893 Watanabe et al. Mar 2004 A1
20040050791 Herczeg Mar 2004 A1
20040055974 Del Vecchio et al. Mar 2004 A1
20040084369 Zha et al. May 2004 A1
20040108268 Liu et al. Jun 2004 A1
20040112831 Rabie et al. Jun 2004 A1
20040139992 Murkute et al. Jul 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040149655 Petrucco et al. Aug 2004 A1
20040154671 Martins et al. Aug 2004 A1
20040168978 Gray Sep 2004 A1
20040168979 Zha et al. Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040178154 Zha et al. Sep 2004 A1
20040188341 Zha et al. Sep 2004 A1
20040211726 Baig et al. Oct 2004 A1
20040217053 Zha et al. Nov 2004 A1
20040222158 Husain et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040238442 Johnson et al. Dec 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050006308 Cote et al. Jan 2005 A1
20050023219 Kirker et al. Feb 2005 A1
20050029185 Muller Feb 2005 A1
20050029186 Muller Feb 2005 A1
20050032982 Muller Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050053878 Bruun et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050077227 Kirker et al. Apr 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050121389 Janson et al. Jun 2005 A1
20050126963 Phagoo et al. Jun 2005 A1
20050139538 Lazaredes Jun 2005 A1
20050184008 Schacht et al. Aug 2005 A1
20050194305 Vido et al. Sep 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20050258098 Vincent et al. Nov 2005 A1
20060000775 Zha et al. Jan 2006 A1
20060021929 Mannheim et al. Feb 2006 A1
20060065596 Kent et al. Mar 2006 A1
20060081533 Khudenko Apr 2006 A1
20060131234 Zha et al. Jun 2006 A1
20060201876 Jordan Sep 2006 A1
20060201879 Den Boestert et al. Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060261007 Zha et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007205 Johnson et al. Jan 2007 A1
20070007207 Mahendran et al. Jan 2007 A1
20070007214 Zha et al. Jan 2007 A1
20070039888 Ginzburg et al. Feb 2007 A1
20070045183 Murphy Mar 2007 A1
20070051679 Adams et al. Mar 2007 A1
20070056904 Hogt et al. Mar 2007 A1
20070056905 Beck et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070075021 Johnson Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070108125 Cho et al. May 2007 A1
20070131614 Knappe et al. Jun 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070181496 Zuback Aug 2007 A1
20070227973 Zha et al. Oct 2007 A1
20080053923 Beck et al. Mar 2008 A1
20080093297 Gock et al. Apr 2008 A1
20080156745 Zha et al. Jul 2008 A1
20080179249 Beck et al. Jul 2008 A1
20080190846 Cox et al. Aug 2008 A1
20080203017 Zha et al. Aug 2008 A1
20080257822 Johnson Oct 2008 A1
20080277340 Hong et al. Nov 2008 A1
20090001018 Zha et al. Jan 2009 A1
20090194477 Hashimoto Aug 2009 A1
20090255873 Biltoft et al. Oct 2009 A1
20100000941 Muller Jan 2010 A1
20100012585 Zha et al. Jan 2010 A1
20100025320 Johnson Feb 2010 A1
20100051545 Johnson et al. Mar 2010 A1
20100170847 Zha et al. Jul 2010 A1
20100200503 Zha et al. Aug 2010 A1
20100300968 Liu et al. Dec 2010 A1
20100326906 Barnes Dec 2010 A1
20110023913 Fulling Feb 2011 A1
20110049047 Cumin et al. Mar 2011 A1
20110056522 Zauner et al. Mar 2011 A1
20110100907 Zha et al. May 2011 A1
20110114557 Johnson et al. May 2011 A2
20110127209 Rogers et al. Jun 2011 A1
20110132826 Muller et al. Jun 2011 A1
20110139715 Zha et al. Jun 2011 A1
20110192783 Cox et al. Aug 2011 A1
20110198283 Zha et al. Aug 2011 A1
20120091602 Cumin et al. Apr 2012 A1
Foreign Referenced Citations (431)
Number Date Country
3440084 Apr 1985 AU
5584786 Sep 1986 AU
7706687 Feb 1988 AU
762091 Jun 2003 AU
2004289373 May 2005 AU
2460207 Mar 2003 CA
2531764 Mar 2005 CA
86104888 Feb 1988 CN
1050770 Jan 1995 CN
2204898 Aug 1995 CN
2204898Y Aug 1995 CN
2236049 Sep 1996 CN
2236049Y Sep 1996 CN
1159769 Sep 1997 CN
1159769 Sep 1997 CN
1244814 Feb 2000 CN
1249698 Apr 2000 CN
1265636 Sep 2000 CN
1319032 Oct 2001 CN
1468140 Jan 2004 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
4326603 Feb 1995 DE
19503060 Aug 1996 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
10045227 Feb 2002 DE
10209170 Aug 2003 DE
202004012693 Oct 2004 DE
012557 Feb 1983 EP
126714 Nov 1984 EP
50447 Oct 1985 EP
194735 Sep 1986 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
344633 Dec 1989 EP
090383 May 1990 EP
1052012 Nov 1990 EP
407900 Jan 1991 EP
463627 Jan 1992 EP
0464321 Jan 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
280052 Jul 1994 EP
395133 Feb 1995 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Oct 1996 EP
824956 Feb 1998 EP
848194 Jun 1998 EP
855214 Jul 1998 EP
627255 Jan 1999 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
0937494 Aug 1999 EP
1034835 Sep 2000 EP
1156015 Nov 2001 EP
1300186 Apr 2003 EP
1349644 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
1445240 Aug 2004 EP
1466658 Oct 2004 EP
1659171 May 2006 EP
1420874 Jan 2011 EP
2620712 Mar 1989 FR
2674448 Feb 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
996195 Jun 1965 GB
2253572 Sep 1992 GB
52-078677 Jul 1977 JP
53108882 Sep 1978 JP
54162684 Dec 1979 JP
55099703 Jul 1980 JP
55129107 Oct 1980 JP
55129155 Oct 1980 JP
56021604 Feb 1981 JP
56118701 Sep 1981 JP
56121685 Sep 1981 JP
57190697 Nov 1982 JP
58-088007 May 1983 JP
60019002 Jan 1985 JP
60-206412 Oct 1985 JP
60260628 Dec 1985 JP
61-097006 May 1986 JP
61-107905 May 1986 JP
61097005 May 1986 JP
61167406 Jul 1986 JP
61167407 Jul 1986 JP
S63-38884 Jul 1986 JP
61171504 Aug 1986 JP
61192309 Aug 1986 JP
61222510 Oct 1986 JP
61242607 Oct 1986 JP
61-257203 Nov 1986 JP
61-263605 Nov 1986 JP
61249505 Nov 1986 JP
61291007 Dec 1986 JP
61293504 Dec 1986 JP
62-004408 Jan 1987 JP
62-114609 May 1987 JP
62-140607 Jun 1987 JP
62144708 Jun 1987 JP
62163708 Jul 1987 JP
62-179540 Aug 1987 JP
62-250908 Oct 1987 JP
62250908 Oct 1987 JP
62262710 Nov 1987 JP
63-93307 Apr 1988 JP
63-097634 Apr 1988 JP
63099246 Apr 1988 JP
63-143905 Jun 1988 JP
63-1602 Jul 1988 JP
63171607 Jul 1988 JP
63180254 Jul 1988 JP
64-075542 Mar 1989 JP
1-501046 Apr 1989 JP
1111494 Apr 1989 JP
01151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-017925 Jan 1990 JP
02017924 Jan 1990 JP
02026625 Jan 1990 JP
02031200 Feb 1990 JP
02040296 Feb 1990 JP
02107318 Apr 1990 JP
02126922 May 1990 JP
02-144132 Jun 1990 JP
02-164423 Jun 1990 JP
02174918 Jul 1990 JP
02241523 Sep 1990 JP
02-284035 Nov 1990 JP
02277528 Nov 1990 JP
03-018373 Jan 1991 JP
03-028797 Feb 1991 JP
03-086529 Apr 1991 JP
03-110445 May 1991 JP
04108518 Apr 1992 JP
04110023 Apr 1992 JP
4-190889 Jul 1992 JP
04187224 Jul 1992 JP
04-250898 Sep 1992 JP
4-256425 Sep 1992 JP
04-265128 Sep 1992 JP
04256424 Sep 1992 JP
04293527 Oct 1992 JP
04-310223 Nov 1992 JP
04317793 Nov 1992 JP
04334530 Nov 1992 JP
04348252 Dec 1992 JP
05-023557 Feb 1993 JP
05-096136 Apr 1993 JP
05-157654 Jun 1993 JP
05137977 Jun 1993 JP
05161831 Jun 1993 JP
05184884 Jul 1993 JP
05279447 Oct 1993 JP
05-285348 Nov 1993 JP
05305221 Nov 1993 JP
06-027215 Feb 1994 JP
06-071120 Mar 1994 JP
06-114240 Apr 1994 JP
06170364 Jun 1994 JP
06190250 Jul 1994 JP
06-218237 Aug 1994 JP
06238273 Aug 1994 JP
06-277469 Oct 1994 JP
06-285496 Oct 1994 JP
06-292820 Oct 1994 JP
06-343837 Dec 1994 JP
07-000770 Jan 1995 JP
07-024272 Jan 1995 JP
07047247 Feb 1995 JP
07068139 Mar 1995 JP
07136470 May 1995 JP
07136471 May 1995 JP
07-155758 Jun 1995 JP
07155564 Jun 1995 JP
7-39921 Jul 1995 JP
07-185268 Jul 1995 JP
07-185271 Jul 1995 JP
07178323 Jul 1995 JP
07185270 Jul 1995 JP
07185272 Jul 1995 JP
07204635 Aug 1995 JP
07236819 Sep 1995 JP
07-256253 Oct 1995 JP
07-275665 Oct 1995 JP
07251043 Oct 1995 JP
07289860 Nov 1995 JP
07303895 Nov 1995 JP
07313973 Dec 1995 JP
08-010585 Jan 1996 JP
8039089 Feb 1996 JP
08-197053 Aug 1996 JP
08323161 Dec 1996 JP
08332357 Dec 1996 JP
09000890 Jan 1997 JP
09038470 Feb 1997 JP
09038648 Feb 1997 JP
09-075689 Mar 1997 JP
09072993 Mar 1997 JP
09099227 Apr 1997 JP
09103655 Apr 1997 JP
9103661 Apr 1997 JP
9117647 May 1997 JP
9138298 May 1997 JP
09-141063 Jun 1997 JP
09155345 Jun 1997 JP
09187628 Jul 1997 JP
09192458 Jul 1997 JP
09-220569 Aug 1997 JP
09271641 Oct 1997 JP
09-313902 Dec 1997 JP
09324067 Dec 1997 JP
10-015365 Jan 1998 JP
10024222 Jan 1998 JP
10033955 Feb 1998 JP
10048466 Feb 1998 JP
10066972 Mar 1998 JP
10076144 Mar 1998 JP
10076264 Mar 1998 JP
10085562 Apr 1998 JP
10085565 Apr 1998 JP
10085566 Apr 1998 JP
10-156149 Jun 1998 JP
10180048 Jul 1998 JP
10225685 Aug 1998 JP
10235168 Sep 1998 JP
10249171 Sep 1998 JP
10286441 Oct 1998 JP
10328538 Dec 1998 JP
11005023 Jan 1999 JP
11028339 Feb 1999 JP
11028467 Feb 1999 JP
11031025 Feb 1999 JP
11033365 Feb 1999 JP
11033367 Feb 1999 JP
11076769 Mar 1999 JP
11076770 Mar 1999 JP
11090189 Apr 1999 JP
11-165200 Jun 1999 JP
11156166 Jun 1999 JP
11156360 Jun 1999 JP
11-179171 Jul 1999 JP
11-309351 Nov 1999 JP
11-319507 Nov 1999 JP
11300177 Nov 1999 JP
11302438 Nov 1999 JP
11319501 Nov 1999 JP
11333265 Dec 1999 JP
2000000439 Jan 2000 JP
200051670 Feb 2000 JP
2000051669 Feb 2000 JP
2000061466 Feb 2000 JP
200079390 Mar 2000 JP
2000070684 Mar 2000 JP
2000-093758 Apr 2000 JP
2000-157845 Jun 2000 JP
2000157850 Jun 2000 JP
2000185220 Jul 2000 JP
2000189958 Jul 2000 JP
2000233020 Aug 2000 JP
2000237548 Sep 2000 JP
2000300968 Oct 2000 JP
2000317276 Nov 2000 JP
2000-334276 Dec 2000 JP
2000342932 Dec 2000 JP
2001009246 Jan 2001 JP
2001070967 Mar 2001 JP
2001079366 Mar 2001 JP
2001079367 Mar 2001 JP
2001104760 Apr 2001 JP
2001120963 May 2001 JP
2001-510396 Jul 2001 JP
2001179059 Jul 2001 JP
2001179060 Jul 2001 JP
2001190937 Jul 2001 JP
2001190938 Jul 2001 JP
2001205055 Jul 2001 JP
2001232160 Aug 2001 JP
2001-269546 Oct 2001 JP
2002011472 Jan 2002 JP
2002143849 May 2002 JP
2002177746 Jun 2002 JP
3302992 Jul 2002 JP
2002-527229 Aug 2002 JP
2002525197 Aug 2002 JP
2002263407 Sep 2002 JP
2002-336663 Nov 2002 JP
2003024751 Jan 2003 JP
2003047830 Feb 2003 JP
2003053157 Feb 2003 JP
2003053160 Feb 2003 JP
200371254 Mar 2003 JP
2003062436 Mar 2003 JP
2003135935 May 2003 JP
2003190976 Jul 2003 JP
2003-265597 Sep 2003 JP
2003-275548 Sep 2003 JP
2003266072 Sep 2003 JP
2003275759 Sep 2003 JP
2003340250 Dec 2003 JP
2004-008981 Jan 2004 JP
2004073950 Mar 2004 JP
2004-230287 Aug 2004 JP
2004216263 Aug 2004 JP
2004230280 Aug 2004 JP
2004249168 Sep 2004 JP
2004322100 Nov 2004 JP
2004-536710 Dec 2004 JP
2004337730 Dec 2004 JP
2005-502467 Jan 2005 JP
2005-087887 Apr 2005 JP
2005144291 Jun 2005 JP
2005154551 Jun 2005 JP
2005279447 Oct 2005 JP
2006-116495 May 2006 JP
2007-547083 Aug 2010 JP
4833353 Dec 2011 JP
20-0232145 Jul 2001 KR
1020020067227 Aug 2002 KR
20-0295350 Nov 2002 KR
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
1006390 Dec 1998 NL
1020491 Oct 2003 NL
1021197 Oct 2003 NL
20053769 Feb 2006 NO
510394 May 2003 NZ
537874 Feb 2007 NZ
347343 Dec 1998 TW
8501449 Apr 1985 WO
8605116 Sep 1986 WO
8605705 Oct 1986 WO
8800494 Jan 1988 WO
8801529 Mar 1988 WO
8801895 Mar 1988 WO
8806200 Aug 1988 WO
8900880 Feb 1989 WO
9000434 Jan 1990 WO
WO 9000434 Jan 1990 WO
9104783 Apr 1991 WO
9116124 Oct 1991 WO
9302779 Feb 1993 WO
9302779 Feb 1993 WO
WO 9302779 Feb 1993 WO
9315827 Aug 1993 WO
WO 9315827 Aug 1993 WO
9323152 Nov 1993 WO
9411094 May 1994 WO
9511736 May 1995 WO
9534424 Dec 1995 WO
9603202 Feb 1996 WO
9607470 Mar 1996 WO
9628236 Sep 1996 WO
9629142 Sep 1996 WO
9641676 Dec 1996 WO
WO 9641676 Dec 1996 WO
9706880 Feb 1997 WO
9822204 May 1998 WO
9825694 Jun 1998 WO
9828066 Jul 1998 WO
9853902 Dec 1998 WO
9901207 Jan 1999 WO
WO 9901207 Jan 1999 WO
99-55448 Nov 1999 WO
9959707 Nov 1999 WO
WO 9959707 Nov 1999 WO
0018498 Apr 2000 WO
WO 0030742 Jun 2000 WO
0100307 Jan 2001 WO
0105715 Jan 2001 WO
0108790 Feb 2001 WO
0119414 Mar 2001 WO
0132299 May 2001 WO
0136075 May 2001 WO
WO 0136075 May 2001 WO
0143856 Jun 2001 WO
0145829 Jun 2001 WO
0226363 Apr 2002 WO
0230550 Apr 2002 WO
0240140 May 2002 WO
0247800 Jun 2002 WO
03000389 Jan 2003 WO
03013706 Feb 2003 WO
WO 03024575 Mar 2003 WO
03053552 Jul 2003 WO
03057632 Jul 2003 WO
03059495 Jul 2003 WO
03068374 Aug 2003 WO
03095078 Nov 2003 WO
2004018084 Mar 2004 WO
2004024304 Mar 2004 WO
2004033078 Apr 2004 WO
2004050221 Jun 2004 WO
2004056458 Jul 2004 WO
2004078327 Sep 2004 WO
2004101120 Nov 2004 WO
2005005028 Jan 2005 WO
2005021140 Mar 2005 WO
2005028085 Mar 2005 WO
2005028086 Mar 2005 WO
2005037414 Apr 2005 WO
2005046849 May 2005 WO
2005077499 Aug 2005 WO
2005082498 Sep 2005 WO
2005107929 Nov 2005 WO
2006026814 Mar 2006 WO
2006029456 Mar 2006 WO
2006029465 Mar 2006 WO
2006047814 May 2006 WO
2006066350 Jun 2006 WO
2007053528 May 2007 WO
2007065956 Jun 2007 WO
2007135087 Nov 2007 WO
2008025077 Mar 2008 WO
2008034570 Mar 2008 WO
2008071516 Jun 2008 WO
2008141080 Nov 2008 WO
2008153818 Dec 2008 WO
2009030405 Mar 2009 WO
Non-Patent Literature Citations (38)
Entry
“Chemical Cleaning Definition”, Lenntech BV, Lenntech Water treatment & purification Holding B.V., Chemical Cleaning.
Anonymous, “Nonwoven Constructions of Dyneon ”THV and Dyneon “The Fluorothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages.
Lloyd, D.R. et al. “Microporous Membrane Formation Via Thermally Induced Phase Separation/Solid-Liquid Phase Separation” Journal of Membrane Science (Sep. 15, 1990), pp. 239-261, vol. 52, No. 3, Elsevier Scientific Publishing Company, Amsterdam, NL.
Mark et al., “Peroxides and Peroxy Compounds, Inorganic” Kirk—Othmer Encyclopedia of Chemical Technology, Peroxides and Peroxy Compounds, Inorganic, to Piping Systems, New York, Wiley & Sons, Ed., Jan. 1, 1978, pp. 14-18.
MicroCTM—Carbon Source for Wastewater Denitrification. Information from Environmental Operating Solutions website including MSDS.
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816.
Johnson, “Recent Advances in Microfiltration for Drinking Water Treatment.”
Almulla et al., Desalination, 153 (2002), pp. 237-243.
Anonymous, “Nonwoven Constructions of Dyneon “THV and Dyneon” THE Flurothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages.
Cote et al., Wat. Sci. Tech. 38(4-5) (1998), pp. 437-442.
Cote, et al. “A New Immersed Membrane for Pretreatment to Reverse Osmosis” Desalination 139 (2001) 229-236.
Crawford et al., “Procurement of Membrane Equipment: Differences Between Water Treatment and Membrane Bioreactor (MBR) Applications” (2003).
Davis et al., Membrane Technology Conference, “Membrane Bioreactor Evaluation for Water Reuse in Seattle, Washington” (2003).
DeCarolis et al., Membrane Technology Conference, “Optimization of Various MBR Systems for Water Reclamation” (2003).
Delgrange-Vincent, N. et al., Desalination 131 (2000) 353-362.
Dow Chemicals Company, “Filmtec Membranes—Cleaning Procedures for Filmtec FT30 Elements,” Tech Facts, Online, Jun. 30, 2000, XP002237568.
Husain, H. et al., “The ZENON experience with membrane bioreactors for municipal wastewater treatment,” MBR2: Membr. Bioreact. Wastewater Treat., 2nd Intl. Meeting; School of Water Sciences, Cranfield University, Cranfield, UK, Jun. 1999.
Jones, Craig, “Applications of Hydrogen Peroxide and Derivatives,” The Royal Society of Chemistry, Cambridge, UK 1999 Chapters 2 and 5.
Kang et al. “Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system” Water Research, Elsevier, Amsterdam, NL, vol. 37, No. 5, Mar. 2003.
Lloyd, D. R. et al. “Microporous Membrane Formation Via Thermally Induced Phase Separation/Solid-Liquid Phase Separation” Journal of Membrane Science (Sep. 15, 1990), pp. 239-261, vol. 52, No. 3, Elsevier Scientific Publishing Company, Amsterdam, NL.
Mark et al., “Peroxides and Peroxy Compounds, Inorganic” Kirk-Othmer Encyclopedia of Chemical Technology, Peroxides and Peroxy Compounds, Inorganic, To Piping Systems, New York, Wiley & Sons, Ed., Jan. 1, 1978, pp. 14-18.
Nakayama, “Introduction to Fluid Mechanics,” Butterworth-Heinemann, Oxford, UK, 2000.
Ramaswammy S. et al. “Fabrication of Ply (ECTFE) Membranes via thermally induced phase Separation”, Journal of Membrane Science, (Dec. 1, 2002), pp. 175-180, vol. 210 No. 1, Scientific Publishing Company, Amsterdam, NL.
Rosenberger et al., Desalination, 151 (2002), pp. 195-200.
U.S. Appl. No. 60/278,007, filed Mar. 23, 2001.
Water Encyclopedia, edited by Jay Lehr, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. Available at http://wwwmmrw.interscience.wiley.com/eow/.
Webster's Ninth New Collegiate Dictionary, Merriam-Webster Inc., Publishers, Springfield, Massachusetts, USA, Copyright 1986, p. 1298.
White et al., The Chemical Engineering Journal, 52 (1993), pp. 73-77.
Wikipedia, “Seawater,” available at http://en.wikipedia.org/wiki/Seawater, Jul. 15, 2007.
Yamamoto et al., Water Science Technology, vol. 2, pp. 43-54; 1989.
Yoon: “Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production” Water Research, Elsevier, Amsterdam, NL, vol. 37, No. 8, Apr. 2003.
Coulson et al., “Coulson and Richardson's Chemical Engineering,” 1999, vol. 1, pp. 358-364.
Cui et al., “Airlift crossflow membrane filtration—a feasibility study with dextran ultrafiltration,” J. Membrane Sci. (1997) vol. 128, pp. 83-91.
Japanese Office Action dated Jan. 4, 2012 for Application No. 2008-294802, 4 pages (translation).
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816.
Ueda et al., “Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res. vol. 31, No. 3, 1997, pp. 489-494.
Lozier et al., “Demonstration Testing of ZenoGem and Reverse Osmosis for Indirect Potable Reuse Final Technical Report,” published by CH2M Hill, available from the National Technical Information Service, Operations Division, Jan. 2000, entire publication.
Zenon, “Proposal for ZeeWeed® Membrane Filtration Equipment System for the City of Westminster, Colorado, Proposal No. 479-99,” Mar. 2000, entire publication.
Related Publications (1)
Number Date Country
20090223895 A1 Sep 2009 US
Continuations (2)
Number Date Country
Parent 10774041 Feb 2004 US
Child 12466199 US
Parent PCT/AU02/01065 Aug 2002 US
Child 10774041 US