The present invention relates to a device and a method for cleaning tubes and is particularly useful for cleaning tubes that are mounted on a tube sheet in a heat exchanger vessel, such as a chemical reactor.
Many chemical reactors are made as shell-and-tube heat exchangers, with many parallel, vertical tubes extending from a top tube sheet to a bottom tube sheet. During use, the tubes typically contain catalyst. Periodically, the reactor is shut down, the catalyst is removed, the tubes are cleaned out, and generally new catalyst is loaded.
In order to clean out the tubes of these heat exchangers, grit blasting often is used. Grit blasting uses an abrasive material, which may be sand, other mineral-type abrasives, dry ice pellets, or other similar abrasive material, to clean the tubes. In that procedure, a grit blasting nozzle is generally inserted into the tube by hand. It is important for the operator to keep the grit blasting nozzle axially aligned with the reactor tube so it directs the abrasive material down the tube. If the nozzle gets cocked off of the longitudinal axis of the tube, directing the blast of abrasive material against the wall of the tube, or if the grit blasting time period is too long, it is possible to blast a hole through the wall of the tube, which is not desirable.
The gas used for grit blasting of sand or other mineral-type abrasives is commonly 100% oil-free dessicant dried air with a dew point of approximately minus 40 degrees Fahrenheit, while the gas to propel the frozen carbon dioxide abrasive material (dry ice pellets) may have a dew point that is even lower.
Grit blasting may be hazardous to personnel performing the cleaning, and serious injury including death can result if the flow of the abrasive material is not properly controlled. For example, if the grit blasting nozzle gets loose outside of the tube while forcefully blowing abrasive material, it can do other damage to the reactor and attached and surrounding peripherals or to the people working in the reactor.
Grit blasting is often followed by the insertion of a swab. Swabs, sometimes referred to in the trade as “pigs”, can be made of foam, felt, cloth, or similar materials; there may be abrasive materials deposited or embedded in the material, and there may be various combinations of materials, with or without abrasives added. The swabs are inserted into the tubes and are pushed through mechanically, or are blown through with gas pressure. A swab wipes the sidewall of the tube as it passes through the tube, thereby cleaning off the wall of the tube. It takes time to load all the swabs and pass them through their respective tubes. Since there may be thousands of tubes in a reactor, it would be helpful to be able to speed up the process and to have a way of keeping track of which tubes have been swabbed. Also, a swab may be left in a tube accidentally, which adversely affects the functioning of the reactor.
The grit blast module 14 may have just a single nozzle 30 for grit blasting a single tube 34 of the reactor as shown in
As shown in
An inflatable tube seal assembly 40 is rigidly mounted on the plate 32, also projecting downwardly from the plate 32, in the same direction as the nozzle 30. This tube seal assembly 40 receives compressed air through a separate line 18A. There may be two or more spaced-apart tube seal assemblies 40, if desired. (The type of tube seal assembly used here is shown in detail in FIG. 9 of U.S. Pat. No. 6,725,706, which is hereby incorporated herein by reference, and includes an inflatable sleeve 56 and an inflation tube 62 for inflating the sleeve 56.) The tube seal assembly 40 is spaced apart from the nozzle 30 a distance that corresponds to the spacing between two of the reactor tubes 34, so that, when the nozzle 30 is in one of the tubes 34, the tube seal assembly 40 is in another of the tubes 34.
Also rigidly mounted on the plate 32 are a laser measurement device 50, the controller 52, a switch 54, an indicator lamp 56, and a display 58.
The controller 52 controls the operation of the valves 25, 25A, 25B in order to control the flow of air and abrasive material through the grit-blasting device 14. This grit-blasting device is used as follows:
The operator picks up the handle 33 of the grit blast module 14 and carries the module 14 to a desired location on the reactor. He then aligns the module 14 with some of the reactor tubes 34, so that, as he lowers the module 14, the nozzle 30 (or nozzles 30) goes into its respective reactor tube 34 (or tubes 34) and the tube seal assembly 40 (or assemblies 40) goes into its respective reactor tube 34 (or tubes 34). He then activates the switch 54 to begin the grit blast procedure.
If the pin 36 has been depressed, triggering the switch 38 to indicate to the computer 52 that the plate 32 is flat on the tube sheet 10, then the computer 52 will begin an automated sequence. First it activates the valve 25A in the air line 18A to inflate the tube seal assembly 40 (or assemblies 40). This anchors the grit blast module onto the reactor so it will not come loose and present a hazard when the high velocity and high volume of abrasive material/air begins passing through the nozzle 30 (or nozzles 30). Without this holding mechanism, the operator would have to manually secure the nozzle into the tube sheet and use gravity along with leaning on the nozzle to hold it in place against the reactionary force of the air and abrasive material. The inflated tube seal assembly 40 not only anchors the grit blast module 14 onto the tube sheet 10, but it, in conjunction with the flat plate 32, also ensures that the longitudinal axis of the nozzle 30 is substantially aligned with the longitudinal axis of the tube 34, so that the nozzle 30 directs its air flow and abrasive material axially along the tube 34.
Next, it uses the laser measurement device 50 to measure the distance to the target 16, from which it determines the position of the module 14 and automatically identifies the tube 34 (or tubes 34) that is being treated by the module 14 based on that measurement.
Next, the computer 52 causes the valves 25 and 25B to shift to positions that direct air to flow through the pot 24, initiating the flow of the air/abrasive material mixture through the nozzle 30. The valves 25 and 25B are probably located a substantial distance away from the controller 52, and, in this preferred embodiment, there is an electrical wire extending from the controller 52 to each of the solenoid valves 25, 25B to control the positions of those valves. (Instead of opening and closing the valve 25B, the controller 52 could turn the compressor 20 on and off, but it is generally considered preferable to open and close the valve 25B and keep the compressor 20 operating.)
Once the computer initiates the flow of the air/abrasive material mixture through the nozzle 30, it times the process, allowing the air/abrasive material mixture to flow through the nozzle 30 for a fixed period of time, so the tube 34 is grit blasted for a standardized time period, which is set in the software that controls the controller 52. This time period may be set for each reactor. The controller 52 also controls the indicator lamp 56, which includes colored lights that indicate to the operator when the air/abrasive material supply is flowing through the nozzle 30 (green) and when it is not flowing through the nozzle 30 (red). If at any time the switch 38 indicates to the controller 52 that the pin 36 is not depressed, the controller 52 will immediately stop the flow of the air/abrasive material mixture through the nozzle 30. This may be accomplished by turning off the compressor 20, switching off the valve 25B, or switching the valve 25 so the air bypasses the pot 24 holding the abrasive material. As mentioned above, it is generally considered to be preferable to switch one or both of the valves 25, 25B rather than to turn off the compressor.
The display 58 includes a count-down timer display and a count-up timer display, which facilitate unattended operation of the device 14. The controller 52 initiates these timers when it initiates the flow of abrasive material/air through the nozzle 30. The count-down timer tells the operator how long it will be before the grit blaster 14 has completed its cycle, which lets him know how much time he has to set up and start another grit blast module 14 in another tube 34 (or tubes 34). The count-up timer lets him know how long it has been since the module 14 has completed its cycle, so he knows how long the module 14 has been sitting idle. The data from these timers also is received by the controller 52 and can be electronically stored at the module 14 or electronically transmitted to a remote monitoring station, which helps supervise the operators, to see how efficiently they are working.
Once the tube(s) 34 has been grit blasted for the set time period, the controller 52 automatically shifts the valve 25 to stop the flow of the abrasive material and allow the flow of air for a preset period of time. Then the controller 52 automatically shifts the valve 25B to stop the flow of air through the nozzle(s) 30, turns on the red light at the display 56, turns on the count-up timer, and shifts the valve 25A to deflate the tube seal 40. The controller 52 also enters into the electronic record the fact that the identified tube(s) 34 has been grit blasted. Then the operator picks up the grit blast module 14, moves it to the next tube(s) 34, and initiates the switch 54 to start the process over again, with the controller 52 checking to be sure the switch 38 is activated to indicate that the device 14 is properly seated with the nozzle 30 in its tube 34 and the seal 40 in its tube, and the automatic sequence repeats.
As the controller 52 collects data from the laser measurement device 50 and determines from the measurements which tubes 34 are being grit blasted, it may transmit that data in real time, such as by a radio transmission, to a remote receiving station, as described in the '706 patent, so someone in a control room or some other location may monitor the work as it is being done. The monitor at the receiving end may have a screen showing a schematic representation of the tube sheet 10 and may have a color indicator or a cross-hatching or some other visual indicator that appears for each tube as it is being grit blasted to show in real time the progress of the operation—which tubes have been grit blasted, which are being grit blasted, and which have not yet been grit blasted. The person at the control room or other receiving location also may have other records concerning the reactor, which also may be shown visually, as described in the '706 patent, such as the test data from previous tests of the tube, which tubes are plugged, which have thermocouples, and so forth.
After the grit blasting has been done, swabs may be blown through the tubes 34 to further clean them out.
Once the swabs are loaded into the tops of their respective reactor tubes 34 through some method, which may be just by manually inserting the swabs into the tubes or by some method as described below, the device 60 is used in the same manner described in the 706 patent, with the seals inflating to seal between the injectors and the tubes and then air being blown through the injectors, except now the air flowing through the air flow paths of the injectors is used to blow the swabs through their respective tubes. The laser measurement and tracking feature described in the '706 patent is used to identify and keep track of which tubes are being treated (swabbed by swabs). The pressure sensor(s) senses when the back pressure for each flow path has exceeded a certain set pressure, indicating that there is a swab in the tube, and that event is automatically recorded electronically in the data logging on the device 60 to have an electronic record of which tubes have been treated. That data also is transmitted to the remote computer 62 in real time. Then, when the swab has been pushed all the way through the tube, the pressure sensor(s) senses that the back pressure drops precipitously to a substantially lower pressure, below a certain set point, and that event also is measured, logged, and transmitted for each respective tube. This produces a record at the device 60 and at the remote station 62 to show which tubes have been “swabbed” and to show that the swabs have passed all the way through and fully out of their respective tubes and that no portion of a swab is still remaining in any tube.
Depending upon the number of air injectors on the device 60 and the force that is generated by the air pressure, it may not be necessary to use the inflatable seals, or only one or two of the inflatable seals may be used. In addition, the inflatable seals may be used in separate tubes from the injectors that are used to blow the swabs through, as was the case with the grit blasting device 14 described above, in which the inflatable seals 40 were separate from the injector nozzles 30 that injected the abrasive material/air mixture.
The control software also may provide visual indications as described in the '706 patent to indicate which tubes have been “swabbed” and which have not and to highlight any tube in which there may have been a problem. For example, if the back pressure did not drop low enough to indicate that the swab had passed through and fully out of the tube, the device 60 itself would have an indicator light or sound an alarm to indicate that there is a problem that needs to be addressed, and the remote unit 62 also would receive a signal from the device 60 indicating a problem at a particular tube that needs follow-up action such as further inspection, removal of other foreign material and so on.
In order to push the swabs 64 through the fixtures and into the reactor tubes, the rigid pushing device 66 is grasped at the handle 69, its pins 68 are aligned with the holes 42, and it is pushed downwardly, pushing the swabs 64 through the fixtures and into the reactor tubes. Once the swabs 64 reach the reactor tubes 34, they expand to fill the reactor tubes 34.
Once the swabs 64 are in their respective reactor tubes 34, the fixtures are removed, the device 60 is inserted into the tops of the reactor tubes 34, the tube seals are inflated, and air is injected through the injector tubes of the device 60 to blow the swabs through their respective tubes, with the device 60 sensing and recording the events of the pressure increase to indicate that the swab is present and the pressure drop to indicate that the swab has passed through the tube, as described above.
Alternatively, the device 60 may be inserted into the fixture(s) in order to blow air into the tubes 34, without having to remove the fixture(s) 41, 41A, 41B.
Alternatively, the device 60 (See
Alternatively, the installation tool 160 may also provide the air flow paths as described for the device 60, with the pins 162 being hollow and the air flowing through the pins 162. In that case, the installation tool 160 may also measure its position and the back pressure as described earlier, with sufficient precision to ensure that the swabs were present and were blown through and fully out of their respective reactor tubes and to electronically record the events that have occurred with respect to each tube that is treated.
To operate this device 71, the operator aligns the throats 74 with the reactor tubes and lowers them into the tops of their respective reactor tubes. The plate 79 rests on the tube sheet, depressing a spring-biased pin 36 and activating a switch 38 as shown in
While this embodiment shows the tube seal 40 on a separate part of the device 71 from the injectors 74, there may be an inflatable tube seal on each throat (or injector) 74, as in the device 60, to help ensure that the air that is being injected to push the swab 64 through the tube 34 does not leak upwardly out of the tube 34.
Since it is not unusual for the cleaning procedure for heat exchanger tubes to include grit blasting followed by cleaning with swabs, the following cleaning method could be adopted which includes some of the devices disclosed above:
1—Utilizing one (or more) grit blast modules 14, a group of tubes 34 is grit blasted. As has been described earlier, this includes:
2—loading swabs 64 into the tubes which have been grit blasted in step 1 above. This may include:
3—forcing the installed swabs 64 through their respective tubes using pressurized gas and sensing the pressure rise and drop to indicate the presence of the swab in a tube and the fact that the swab has been blown through the tube, and automatically electronically recording those events for that respective tube.
While the tubes described here are chemical reactor tubes, the equipment and method described above could be used for cleaning out the tubes of other heat exchangers or other types of tubes as well. It will be obvious to those skilled in the art that various modifications may be made to the embodiments described above without departing from the scope of the present invention as claimed.
This application claims priority from U.S. Provisional Application Ser. No. 60/942,737 filed Jun. 8, 2007 and from U.S. Provisional Application Ser. No. 60/942,735 filed Jun. 8, 2007.
Number | Date | Country | |
---|---|---|---|
60942737 | Jun 2007 | US | |
60942735 | Jun 2007 | US |