Pursuant to 35 U.S.C.§ 119 and the Paris Convention Treaty, this application claims foreign priority to Chinese Patent Application No. 201710523299.2 filed Jun. 30, 2017, the contents of which and any intervening amendments thereto are incorporated herein by reference. Inquiries from the public to applicants or assignees concerning this document or the related applications should be directed to: Matthias Scholl P. C., Attn.: Dr. Matthias Scholl Esq., 245 First Street, 18th Floor, and Cambridge, Mass. 02142.
The invention relates to a method of collecting radiation information of a turbine blade.
Conventionally, to measure the temperature of turbine blades, a pyrometer probe is inserted into a through-hole drilled on the casing near the turbine blades. The probe is disposed above the blades, and the high temperature gas flows between the blades and the probe. Under such circumstances, the high temperature gas will absorb the radiation of the turbine blade. This adversely affects the measurement of radiation intensity of the turbine blade by the probe.
In view of the disadvantages or needs for improvement existing in the prior art, the disclosure provides an improved method of collecting radiation information of a turbine blade. By analyzing the combustion gas composition and concentration, the three most suitable radiation bands for temperature measurement are calculated accurately. Thus, the temperature measurement error is reduced by selecting bands to avoid the combustion gas absorption peaks.
The composition and concentration of each combustion gas is obtained by a spectrometer, and then the temperature measurement bands are selected step by step. The selection is based on the following two principles:
(1) The total absorption of the various gases within the temperature measurement band should be as low as possible, which means the radiation energy attenuation will be as small as possible when going through the high temperature gas;
(2) The blade radiation should be as large as possible to facilitate the information filtering and noise reduction.
At first, the total gas absorption rate can be calculated by formula after spectroscopic analysis. And then, the blade radiation changing with the wavelength is obtained according to Planck formula. Utilizing the two curves to avoid the combustion gas absorption section, three temperature measurement windows are acquired. Finally, the turbine blade temperature is calculated using the three bands.
To achieve the above object, in an aspect of the disclosure, there is provided a method of collecting radiation information of a turbine blade, the method comprising:
wherein ai represents an absorption coefficient of a component gas i, and i is a serial number of the component gas in the combustion gas;
wherein M(λ,T) represents the radiation when the wavelength is λ and a temperature is T, ε is a radiation coefficient, and C1, C2 are first and second radiation constants; and drawing a curve illustrating a relationship between the total absorption rate obtained in 3), the radiation and the wavelength at the same coordinate system;
In a class of this embodiment, a wavelength Δs of the three bands obtained in 6) corresponding to a minimum absorption rate of the combustion gas is calculated, and a distance d between the wavelength Δs and a center wavelength of a corresponding band is calculated; and a band in the range of λs±d in the three bands are determined as the acquisition windows.
The invention uses the spectrometer to analyze the composition and concentration of the combustion gas, and the total absorption rate of the combustion gas components is calculated. Then, the relationship between the radiation intensity of the turbine blade and the wavelength is calculated by Plank formula. According to the two curves above, the three bands which have strong turbine blade radiation and low gas absorption rate are selected. The three bands are considered to be the data acquisition windows of the turbine blade, which greatly improve the data acquisition accuracy of the turbine blade.
The combustion gas analysis is as follows:
Combustion products include H2O, CO2, N2, a small amount of CO, NO, SO2, O2, H2 and so on. According to the infrared absorption theory of molecules, the infrared absorption of homo-nuclear diatomic molecules (H2, O2, N2) can be ignored. Table 1 shows the center absorption infrared wavelength of the main compositions.
Here, the calculation of the absorption coefficient with H2O as an example at 1 μm is illustrated. Look up the HITEMP database to obtain the absorbance rate of H2O, CO2, CO, NO, SO2 at 1000 K. NH
Similarly, we can get the absorption of several other gases, add all of them to get the total absorption rate at 1 μm is A=0.55. Then, C1=3.71418×10−6 Wm2, C2 1.4388×10−2 mK, ε=1, λ=1 μm, T=1000 K, substituting them to the Planck equation
the blade radiation got is Mλ=1 μm=2.09*109.
Ultimately, the total absorption rate and blade radiation curve at detection range 0.4-5 μm can be obtained using the same method, as shown in
The bands after removing the combustion gas absorption peaks avoid the impact of the combustion gas radiation on the blade temperature measurement, which contribute to improve the temperature measurement accuracy. The detector converts the received radiation signal into an electrical signal, and amplifies the signal through the front-end amplifier. Then, the signal processed by the above steps is used for data integration by the data acquisition card. Finally, the blade temperature is calculated by substituting the radiation formula from the PC.
A curve showing the relationship between the total gas absorption rate 27 and the blade radiation 28 is shown at the same coordinate system by data processing software. As shown in
Unless otherwise indicated, the numerical ranges involved in the invention include the end values. While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201710523299.2 | Jun 2017 | CN | national |