This application claims priority from Korean Patent Application No. 2004-113702, filed on Dec. 28, 2004 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present general inventive concept relates to a portable sound system, and more particularly, to a method of compensating audio frequency response characteristics of a portable sound system using acoustic characteristics of a user as measured in real-time, and a portable sound system using the same.
2. Description of the Related Art
Generally, a conventional portable sound system outputs music into a user's ears through earphones. The conventional portable sound system compensates for poor audio frequency response characteristics using a preset equalizer (e.g., having a modern rock mode and a jazz mode) without considering acoustic characteristics specific to the user when reproducing the music through the earphones in the user's ears. Therefore, the conventional portable sound system does not provide effective audio frequency response compensation for individual users because of the preset equalizer.
Acoustic characteristics differ for each individual user depending on the user's age, surroundings, health, etc. Therefore, since the conventional portable sound system compensates the audio frequency response characteristics according to a general standard on which the preset equalizer is based, the audio frequency response characteristics cannot be compensated according to each individual user.
The preset equalizer used with the conventional portable sound system typically has a rock or a jazz mode. However, the individual users cannot hear sound with an optimum quality because the preset equalizer does not accurately match the acoustic characteristics of the individual users.
The present general inventive concept provides a method of compensating audio frequency response characteristics in real-time using acoustic characteristics of a user measured in real-time.
The present general inventive concept also provides a portable sound system using the method of compensating audio frequency response characteristics in real-time.
Additional aspects of the present general inventive concept will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the general inventive concept.
The foregoing and/or other aspects of the present general inventive concept are achieved by providing a method of compensating audio frequency response characteristics of a sound system in real-time. The method includes generating an acoustic characteristics curve of a user based on a minimum perception level of the user with respect to audible audio frequency bandwidths, generating an acoustic compensation curve of the user based on the acoustic characteristics curve of the user and a predetermined frequency characteristics target curve, and compensating the audio frequency characteristics of a sound based on the acoustic compensation curve of the user.
The foregoing and/or other aspects of the present general inventive concept are also achieved by providing a method of reproducing sound in a sound system, the method comprising detecting acoustic characteristics of a user, and reproducing a sound signal and modifying a frequency response curve of the sound signal according to the detected acoustic characteristics of the user.
The foregoing and/or other aspects of the present general inventive concept are also achieved by providing a sound system, including a sound reproducing unit to reproduce a sound from a predetermined recording medium, an acoustic characteristics processing unit to generate an acoustic characteristics curve of a user based on a minimum perception level of the user with respect to an audible audio frequency band, an equalizer to generate filter coefficients that correspond to an acoustic compensation curve of the user based on the acoustic characteristics curve of the user and a predetermined frequency characteristics target curve, and a digital filter processing unit to compensate frequency characteristics of the sound reproduced by the sound reproducing unit according to the filter coefficients generated by the equalizer.
The foregoing and/or other aspects of the present general inventive concept are also achieved by providing a sound system, comprising a user acoustics unit to detect acoustic characteristics of a user, a sound reproducing unit to reproduce a sound signal, and a processing unit to modify a frequency response curve of the reproduced sound signal according to the detected acoustic characteristics of the user.
The foregoing and/or other aspects of the present general inventive concept are also achieved by providing a sound system, comprising a sound reproducing unit to reproduce a sound signal when the system is in a sound reproducing mode, and an acoustics measuring unit to generate a user-specific sound processing unit to process sound according user-specific acoustics and one or more user preferences in real time when the system is in a measuring mode.
The foregoing and/or other aspects of the present general inventive concept are also achieved by providing a method of compensating audio frequency response characteristics, the method comprising generating an acoustic characteristics curve by checking levels of each of a plurality of bands in a frequency domain, dividing the acoustic characteristics curve into curve bands of a predetermined width and setting a representative sound pressure level for each of the curve bands, calculating a difference between the representative sound pressure level of each of the curve bands and preset reference levels, and setting filter coefficients according to the calculated difference between the representative sound level of each of the curve bands and the preset reference levels.
The foregoing and/or other aspects of the present general inventive concept are also achieved by providing a computer readable medium containing executable code to compensate audio frequency response characteristics of a sound system in real-time, the medium comprising a first executable code to generate an acoustic characteristics curve of a user based on a minimum perception level of the user with respect to audible audio frequency bandwidths, a second executable code to generate an acoustic compensation curve of the user based on the acoustic characteristics curve of the user and a predetermined frequency characteristics target curve, and a third executable code to compensate the audio frequency response characteristics of a sound based on the acoustic compensation curve of the user.
These and/or other aspects of the present general inventive concept will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
Reference will now be made in detail to the embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present general inventive concept while referring to the figures.
Referring to
The selecting unit 110 selects between a measuring mode to measure the acoustic characteristics of the user and a sound reproducing mode to reproduce sound according to a selection made by the user.
The sound reproducing unit 120 reproduces audio data that is read from a sound recording medium, such as a memory, as sound when the sound reproducing mode is selected by the selecting unit 110.
The acoustic characteristics processing unit 130 generates an acoustic characteristics curve of the user based on a minimum perception level of the user with respect to the audible audio frequency band when the sound system is in the measuring mode. In particular, the audio frequency tone output unit 132 outputs a plurality of audio signals for each of a plurality of audio frequency bands. The volume controller 134 controls an audio signal level (i.e., a volume) depending on the minimum perception of the user and outputs the plurality of audio signals to earphones or a headphone. The display unit 138 displays information about whether the audio signal level of a corresponding audio frequency band having the volume changed by the volume controller 134 is audible to the user. The user input unit 137 may comprise a button to be pressed by the user when the user begins to hear sound through the earphone or the headphone. The user's acoustic characteristic curve generating unit 136 sets a user acoustic level for each of the audio frequency bands when the sound becomes audible (i.e., the user begins to hear the sound) through the earphone or the headphone. Accordingly, the user's acoustics characteristics curve generating unit 136 generates the acoustic characteristics curve of the user based on the user acoustic level at the various audio frequency bands.
The EQ generating unit 150 generates an acoustic compensation curve by comparing the acoustic characteristics curve of the user generated by the acoustic characteristics processing unit 130 and an audio frequency characteristics target curve desired by the user. Accordingly, the EQ generating unit 150 generates filter coefficients that correspond to the acoustic compensation curve of the user.
The digital filter processing unit 160 compensates audio frequency response characteristics of the sound reproduced by the sound reproducing unit 120 according to the filter coefficients generated by the EQ generating unit 150.
Referring to
Referring to
Referring to
The user puts the earphones in or on their ears and presses a specified button 314 to indicate whenever a signal reproduced by the sound system 300 is heard. The sound system 300 measures the acoustic characteristics of the user whenever the button 314 is pressed by the user. The sound system 300 displays information to check an audibility of a signal in a relevant audio frequency band. For example, the text “press the button if you hear a sound” may be displayed on a display unit 312 to instruct the user accordingly.
A hearing threshold (HT), which is the smallest (i.e., softest) sound that is audible by the human ear, and an uncomfortable hearing level (UCL), which is a loud sound that can cause aches or damage to the human ear, are different for each audio frequency band. An audiogram is a graph that illustrates a hearing ability of a user. That is, the audiogram graphs the softest sound that the user can hear. Referring to
Referring to
The loudness of the pure sound of the other frequency that is heard at the same loudness as the reference sound of 1000 Hz in the equal loudness curve is called a loudness level. The loudness level is measured in “phons.” For example, a sound of 40 dB at 200 Hz is measured to have 40 phons. As illustrated in
In addition, as illustrated in
First, it is determined whether the sound system is in the mode used to estimate the acoustic characteristics of the user (i.e., the measuring mode) or the sound reproducing mode (operation 610). If the sound system is in the sound reproducing mode, the sound system reproduces sound (operation 612).
If the sound system is in the measuring mode, the sound system measures the acoustic characteristics of the user, for example, using the audiogram. That is, the audible audio frequency band is divided into a plurality of bandwidths (e.g. 10 bandwidths), and then an audio signal in each of the bandwidths is output to the user (e.g., by the headphones of the earphones) (operation 614). The volume of the audio signal of a specified bandwidth is turned up or down (operation 616) to determine the acoustic level of the user for each of the bandwidths by determining when the user can hear a sound of the audio signal through the headphones or the earphones (operation 618).
If the audio signal of the last bandwidth is checked, the acoustic level of the user that is set for each of the bandwidths is applied to a filter, thereby generating an acoustic characteristics curve of the user (operation 624).
Then, the acoustic compensation curve of the user is generated based on the acoustic characteristics curve of the user and the audio frequency characteristics target curve desired by the user (operation 626). That is, the acoustic compensation curve of the user is generated by applying a value of the audio frequency characteristics target curve to a value of the acoustic characteristics curve of the user. A method of compensating the acoustic characteristics of the user may include a method of compensating the acoustic characteristics by simply making acoustic characteristics of the user flat, a method of compensating the acoustic characteristics in accordance with the loudness curve (see
An EQ (equalizer) is then generated using the acoustic compensation curve of the user, thereby compensating the audio frequency response characteristics of the sound that is reproduced (operation 632).
A conventional EQ (e.g., having a rock mode, a jazz mode, a classic mode, etc.) and various sound effects EQ (e.g., virtualizer) may be selectively added to the EQ, which has the acoustic characteristics of the user applied therein (operations 634 and 636).
First, an acoustic characteristics curve of the user is generated in the frequency domain using an audiogram method (operation 710). Diagram (7a) in
The acoustic characteristics curve of the user is divided into octave bands by performing octave band transformation, and each of the octave bands is represented as sound pressure levels (operation 720). Diagram (7b) in
As illustrated in diagram (7c), differences between a predetermined reference level and the representative sound pressure levels of each of the octave bands are then calculated (operation 730).
An infinite impulse response (IIR) filter coefficient, which reflects the sound pressure level differences of the octave bands is then calculated, as illustrated in diagram (7d) in
According to the various embodiments of the present general inventive concept, audio frequency response characteristics can be compensated to suit a specific user using a portable sound system in real-time. In addition, the audio frequency response characteristics can be adjusted using an audiogram examining function even for users who may be deaf or have problems hearing. Furthermore, the audio frequency response characteristics reproduced by the sound system can also be compensated by considering frequency response characteristics of an earphone used together with the sound system in addition to the acoustic characteristics of the user.
The present general inventive concept can be embodied as computer readable codes on a computer readable recording medium. The computer readable recording medium may include any data storage device that can store data which can be thereafter read by a computer system. Examples of the computer readable recording medium include a read-only memory (ROM), a random-access memory (RAM), CD-ROMs, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission through the Internet). The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. The present general inventive concept may also be embodied in hardware or a combination of hardware and software.
Although a few embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0113702 | Dec 2004 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4476724 | Gotze | Oct 1984 | A |
5835611 | Kaiser et al. | Nov 1998 | A |
6078669 | Maher | Jun 2000 | A |
7110951 | Lemelson et al. | Sep 2006 | B1 |
20020183648 | Hou | Dec 2002 | A1 |
20030063763 | Allred et al. | Apr 2003 | A1 |
20040202339 | O'Brien, Jr. et al. | Oct 2004 | A1 |
20050053249 | Wu et al. | Mar 2005 | A1 |
20050078838 | Simon | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
2002-259938 | Sep 2002 | JP |
1991-6321 | Apr 1991 | KR |
20-15739 | Jun 2000 | KR |
1996-12793 | Dec 2000 | KR |
2001-24463 | Mar 2001 | KR |
2002-0044416 | Jun 2002 | KR |
2002-44416 | Jun 2002 | KR |
WO 9009760 | Sep 1990 | WO |
WO 0239784 | May 2002 | WO |
WO 03026349 | Mar 2003 | WO |
WO 2004004414 | Jan 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060140418 A1 | Jun 2006 | US |