1. Field of the Invention
The present invention relates to a seek routine of a hard disk drive.
2. Background Information
Hard disk drives contain a plurality of magnetic heads that are coupled to rotating disks. The heads write and read information by magnetizing and sensing the magnetic fields of the disk surfaces. Each head is attached to a flexure arm to create a subassembly commonly referred to as a head gimbal assembly (“HGA”). The HGA's are suspended from an actuator arm. The actuator arm has a voice coil motor that can move the heads across the surfaces of the disks.
Information is typically stored in radial tracks that extend across the surface of each disk. Each track is typically divided into a number of segments or sectors. The voice coil motor and actuator arm can move the heads to different tracks of the disks.
Each sector may have also a servo field 5 located adjacent to a data field 6. The servo field 5 contains a plurality of servo bits A, B, C and D that are read and utilized in a servo routine to position the head 7 relative to the track. By way of example, the servo routine may utilize the algorithm of ((A−B)−(C−D)) to create a position error signal (“PES”). The PES is used to create a drive signal for the voice coil motor to position the head on the track.
The servo is written with a servo writer that writes the various servo bits across an essentially blank disk. The disk is sometimes divided into zones. The different zones may produce a dead zone of track addresses as shown in
The disk drive can enter a seek routine to access data at different disk tracks. During a seek routine a requested address location is provided and a corresponding seek time and drive current are calculated to drive the voice coil motor and move the heads to the desired location. The servo of the disk drive is employed to center the head on the tracks and read the track identifications.
To optimize the servo process most drives utilize a feedforward servo loop. The feedforward loop may include a state estimator that predicts the expected location of the head(s) as it moves across the disk. The state estimator generates and utilizes an estimation error to predict the expected location of the head(s).
The track dead zones can cause a discontinuity in the servo process.
A hard disk drive with a circuit that provides a current to a voice coil motor to perform a seek routine over a disk that has track boundaries. The circuit includes a state estimator that predicts a next state of the head. The state estimator sets an estimation error to zero when the head is over one of the track boundaries.
Described is a hard disk drive with a circuit that provides a current to a voice coil motor to move a head over a disk in a seek routine. The disk has track boundaries with discontinuities in track addresses. The circuit includes a state estimator that predicts a next state of the head. The state estimator sets an estimation error to zero when the head is over one of the track boundaries. The estimator then computes a predicted position that is used in a feed forward servo loop to generate a drive current. The drive current is provided to the voice coil motor to move the head across the disk.
Referring to the drawings more particularly by reference numbers,
The disk drive 10 may include a plurality of heads 20 located adjacent to the disks 12. The heads 20 may have separate write and read elements. The write element magnetizes the disk 12 to write data. The read element senses the magnetic fields of the disks 12 to read data. By way of example, the read element may be constructed from a magneto-resistive material that has a resistance which varies linearly with changes in magnetic flux.
Each head 20 may be gimbal mounted to a suspension arm 26 as part of a head gimbal assembly (HGA). The suspension arms 26 are attached to an actuator arm 28 that is pivotally mounted to the base plate 16 by a bearing assembly 30. A voice coil 32 is attached to the actuator arm 28. The voice coil 32 is coupled to a magnet assembly 34 to create a voice coil motor (VCM) 36. Providing a current to the voice coil 32 will create a torque that swings the actuator arm 28 and moves the heads 20 across the disks 12.
The hard disk drive 10 may include a printed circuit board assembly 38 that includes one or more integrated circuits 40 coupled to a printed circuit board 42. The printed circuit board 40 is coupled to the voice coil 32, heads 20 and spindle motor 14 by wires (not shown).
The read/write channel circuit 58 is connected to a controller 64 through read and write channels 66 and 68, respectively, and read and write gates 70 and 72, respectively. The read gate 70 is enabled when data is to be read from the disks 12. The write gate 72 is enabled when writing data to the disks 12. The controller 64 may be a digital signal processor that operates in accordance with a software routine, including a routine(s) to write and read data from the disks 12. The read/write channel circuit 58 and controller 64 may also be connected to a motor control circuit 74 which controls the voice coil motor 36 and spindle motor 14 of the disk drive 10. The controller 64 may be connected to a non-volatile memory device 76. By way of example, the device 76 may be a read only memory (“ROM”) that contains instructions that are read by the controller 64.
Each sector of a disk track typically has servo bits A, B, C and D as shown in
Because of anomalies in the servo writing process there may be areas of the disk that have discontinuities in the track addresses. These track boundaries or address dead zones can be predetermined and the locations can be stored in memory. When the drive enters a seek routine the heads are moved from one track to another track. The tracks are periodically sampled to read the track ID to determine the location of the head.
The head position y(n) is periodically measured every sampling period Ts. There is typically a delay time Td between the measured head position and the computation of a state position value x(n). The predicted state value {circumflex over (x)}(n), predicted state value
{circumflex over (x)}(n)=
Where L is an estimation gain vector and the coefficients Ad, Bd, Cd and Dd can be computed from the following equations:
Ac, Bc and Dc can be derived from the equations and matrices of the classical voice coil motor model as follows:
Ka is an acceleration constant. The timing of the measured output and state positions is shown in
If the head is at a discontinuous track boundary then the estimation error y(n)−
The predicted state position is used in the feed forward servo loop to generate the drive current that drives the voice coil motor and moves the heads.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
5233486 | Albert | Aug 1993 | A |
5844744 | Suzuki et al. | Dec 1998 | A |
6078453 | Dziallo et al. | Jun 2000 | A |
6414809 | Sakai et al. | Jul 2002 | B1 |
6678109 | Kagami et al. | Jan 2004 | B2 |
7012773 | Ashikaga et al. | Mar 2006 | B2 |
7184230 | Chue et al. | Feb 2007 | B1 |
Number | Date | Country |
---|---|---|
11073651 | Mar 1999 | JP |