Drilling muds are employed when drilling boreholes into earth formations such as in the hydrocarbon recovery and carbon dioxide sequestration industries, for example. The muds have specific properties such as viscosity, density, and gelled characteristics that aid the drilling operation. These same properties however, are undesirable for use during other aspects of a well completion operation. As such, the mud is typically recovered to surface and replaced with other fluids that have properties better suited for other operations such as, treating the formation via fracturing and acidizing, for example. This method of replacing the mud serves the purpose for which it is employed; however operators are always interested in methods that may improve efficiency of their operations.
Disclosed herein is a method of completing a well. The method includes, pumping treating fluid into a tool string in the well, displacing drilling mud within the tool string with the treating fluid, and treating an earth formation with the treating fluid.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
The foregoing well completion system 10 allows an operator to complete a well as described hereunder. Treating fluid 66 can be pumped into the tool string 18 to displace drilling mud 70 already present in the tool string 18. The mud 70 can be forced through the openings 38 when the openings 38 are not covered by the sleeve 42. The sleeve 42 can be moved to uncover the openings 38 by pressure built within the tool string 18 or by other means, including a shifting tool or control line (not shown), for example. The mud 70 forced through the openings 38 can flow into an inefficient or nonproducing zone 34 of the earth formation 26. A spacer 74 such as a physical wiper and/or a fluidic separation, for example (note the illustrated embodiment is a fluidic separation) can be positioned between the treating fluid 66 and the mud 70 to decrease mixing of these disparate fluids. Embodiments may include chemicals such as surfactants in the spacer 74 to help clear the mud 70 (and solids such as cuttings contained therein) from within the tool string 18 while the treating fluid 66 is displacing the mud 70. Specialized surfactant blends can help maintain separation between the mud 70 which may be synthetic or oil based, for example, and the treating fluid 66 which may be water based, for example. Examples of such surfactant blends include, weighting agent, viscosifier, nonpolar fluid, and fresh water or brine (e.g. sea water). In a non-restrictive version, the surfactant blend may include an alkyl polyglycoside and a polyglycerol ester, for example. Alternatively, the surfactant package may have an absence of an alkyl polyglycoside. These and additional examples of specialized surfactant blends are disclosed in U.S. Pat. No. 8,415,279 the content of which is incorporated herein by reference in its entirety. The treating fluid 66 also helps to remove filter cake and drilling fluid material, solubilize synthetic or oil residue, water-wet a face of the formation 26 and rock matrix, and carry residual mud particles deeper into the rock matrix. When the spacer 74 is microemulsion-based it not only helps maintain separation between the mud 70 and treating fluid 66, the spacer 74 also cleans everything within the tool string 18 it comes into contact with as it is pumped down hole. Also due to an ultra-low interfacial tension of the microemulsion of the spacer 74, destruction of the synthetic or oil based drilling mud 70 occurs as well as creating a high diffusion rate into the rock matrix, thereby facilitating a more efficient fracture penetration into the formation 26. Forcing the mud 70 into the formation 26 through the openings 38 negates the need to recover and filter the mud 70 at a surface 78 of the well 14, which can be a costly and time consuming process.
The treating fluid 66, once positioned within the tool string 18 can be used to treat the zones 34 of the earth formation 26. Such treatments can include fracturing including pumping proppant 82 into fractures 86 (shown in
After all the zones 34 have been treated the seats 58, the plugs 62 and any other potentially obstructing items within the tool string 18 can be removed from the tool string 18. In some embodiments this removal can be done via dissolution of the seats 58, the plugs 62 and other items by making them out of dissolvable materials. In other embodiments removal of the seats 58, the plugs 62 and other items may be via drilling or milling, for example. The configuration of the system 10 allows for the drilling mud 70 to be reverse circulated to substantially refill the tool string 18 with the drilling mud 70. Recirculating the mud 70 into the tool string 18 has some advantages over conventional methods. One advantage being a reduction in losses of expensive fluids through the open ports 46 and into the now fractured earth formation 26. The gelled properties of the mud 70 allows the mud 70 to substantially plug the fractures 86 by bridging small gaps between the proppant 82. Additionally, the recirculated mud 70 is very good for carrying the cuttings formed during drilling and milling of the seats 58, the plugs 62 and other items within the tool string 18.
Recirculation of the mud 70 into the tool string 18 in some applications may be difficult to achieve, due to pressure differentials and differences in permeability, for example. Even if recirculating the mud 70 is not difficult it may not be desirable. In such cases, the sleeve 42 may be moved back to a position wherein it occludes flow through the openings 38 to prevent recirculation of the mud 70 into the drill string 18.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Number | Name | Date | Kind |
---|---|---|---|
4423781 | Thomas | Jan 1984 | A |
4453598 | Singer et al. | Jun 1984 | A |
7257955 | Lifson et al. | Aug 2007 | B2 |
7874365 | East et al. | Jan 2011 | B2 |
8415279 | Quintero et al. | Apr 2013 | B2 |
20030075326 | Ebinger | Apr 2003 | A1 |
20060070740 | Surjaatmadja et al. | Apr 2006 | A1 |
20060096758 | Berry et al. | May 2006 | A1 |
20060137876 | Santra et al. | Jun 2006 | A1 |
20070135314 | Frenier et al. | Jun 2007 | A1 |
20090283280 | Themig | Nov 2009 | A1 |
20110005310 | Lunkad et al. | Jan 2011 | A1 |
20140190696 | Iverson et al. | Jul 2014 | A1 |
20140290958 | Marr et al. | Oct 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20150369024 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62013661 | Jun 2014 | US |