The disclosure relates to a method of conducting a coiled tubing operation.
Coiled tubing strings are used in many applications in the oil and gas industry. One particular application is for the recovery of oil and gas through a wellbore having a horizontal portion (also referred to as “a horizontal well”) that extends through a hydrocarbon bearing reservoir. However, several problems can arise when a coiled tubing string is inserted into a horizontal well.
For example, high friction forces might cause buckling, sinusoidal lockup, helical lockup, or a reduced lifespan of the coiled tubing string as it is lowered into the horizontal well, which may limit the horizontal reach of the coiled tubing string because these problems tend to worsen as the horizontal portion of the well lengthens. Also, the tortuosity of the well, or the sloping of the horizontal portion of the well in an upward or a downward direction, can also complicate calculations of the potential horizontal reach of the coiled tubing string.
Therefore, there is a need for a new and/or improved coiled tubing operation.
Implementations of the present disclosure relate to methods of conducting a coiled tubing operation.
In one implementation, a method includes forming a tubing string, the tubing string having an outer surface. The method also includes applying a coating to an application portion of the outer surface of the tubing string. The application portion includes a portion of the tubing string that will be disposed in a horizontal section of a wellbore, and the coating has a surface energy lower than a surface energy of the outer surface of the tubing string to thereby reduce friction between the tubing string and a casing disposed in the horizontal section of the wellbore as the tubing string is lowered into the wellbore.
So that the manner in which the above-recited features of the disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
The specified material properties may include, but are not limited to, physical properties, mechanical properties, and structural properties. The physical properties may include, but are not limited to, dimensions (such as length, inner/outer diameter size, and wall thickness), surface quality (such as smoothness), and roundness. The mechanical properties may include but are not limited to, yield strength, tensile strength, elongation, elastic modulus, toughness, fracture toughness, hardness, fatigue life, fatigue strength, ductility. The structural properties may include, but are not limited to grain size, corrosion resistance, microstructure, and composition.
The flat metal sheet 10 is continuously fed from the accumulator 200 into the tube forming operation 15. In the tube forming operation 15, the flat metal sheet 10 is bent into a tubular form such that a longitudinal seam is formed along the longitudinal length by the edges of the flat metal sheet 10 that are brought together. The flat metal sheet 10 may be bent into the tubular form using one or more tube formers as known in the art.
From the tube forming operation 15, the flat metal sheet 10 is continuously fed into a seam welding operation 20. In the seam welding operation 20, the flat metal sheet 10 that has been bent into a tubular form is welded along the seam to form a tubing string 90. The seam may be welded using a high frequency induction welding process and/or other welding processes as known in the art.
After the seam welding operation 20, the tubing string 90 is sent through a seam annealing operation 25, an air cooling operation 30, and/or a water cooling operation 35, collectively referred to as an initial cooling operation. In particular, the tubing string 90 is annealed along the seam weld, then air cooled, and/or then water cooled to a temperature less than about 200 degrees Fahrenheit.
In the seam annealing operation 25, for example, the welded seam is quickly heated (such as by induction heating to a temperature of about 955 degrees Celsius) to reduce hardness, refine grain size, and increase ductility of the welded seam. In the air cooling operation 30 and/or the water cooling operation 35, for example, the tubing string 90 is slowly cooled entirely or at least partially by air and/or water to bring down the temperature of the tubing string 90 to a temperature less than about 200 degrees Fahrenheit for initial tube sizing and/or inspection/testing operations. The initial cooling operation may include any number of air cooling and/or water cooling operations.
After the initial cooling operation, an initial tube sizing operation 40 is conducted. The tubing string 90 progresses through the initial tube sizing operation 40 where one or more sizing rollers form the preliminary outside diameter of the tubing string 90. For example, the one or more rollers (incrementally) reduce the outer diameter of the tubing string 90 from a larger outer diameter to a smaller nominal outer diameter. After the initial tube sizing operation 40, the tubing string 90 undergoes an optional initial inspection/testing operation 45 where one or more non-destructive tests are conducted on the tubing string 90 to verify that the specified material properties and weld seam quality of the tubing string 90 have been attained.
From the optional initial inspection/testing operation 45, the tubing string 90 is sent through an austenitizing operation 50, a quenching operation 55, and/or a tempering operation 60, collectively referred to as a heat treatment operation. In particular, the tubing string 90 is treated, e.g. repeatedly heated and/or cooled, by the heat treatment operation to attain specified material properties, such as by changing the microstructure of the tubing string 90. The austenizing operation 50, quenching operation 55, and the tempering operation 60 may be optional.
In the austenitizing operation 50, for example, the tubing string 90 is heated to a temperature within a range of about 850 degrees Celsius to about 1,050 degrees Celsius to change the microstructure of the tubing string 90 to austenite. In the quenching operation 55, for example, the tubing string 90 is rapidly cooled by water to form martensite and increase the hardness and strength of the tubing string 90. In the tempering operation 60, for example, the tubing string 90 is heated again to decrease some of the hardness of the tubing string 90 attained during the quenching operation 55 and form a tempered martensite microstructure. The heat treatment operation may include any number of stress relieving operations such as austenitizing, quenching, and/or tempering operations. From the quenching operation 55, the tubing string 90 is continuously fed into an optional tube sizing operation 56 to conduct tube sizing. In the tube sizing operation 56, the outer diameter of the tubing string 90 can be refined to a desired outer diameter. After the optional tube sizing operation 56, the tubing string 90 undergoes an optional inspection/testing operation 57 where one or more non-destructive tests can be conducted on the tubing string 90 to verify that the specified material properties and weld seam quality of the tubing string 90 have been attained.
After the heat treatment operations, the tubing string 90 is sent through another air cooling operation 65 and/or another water cooling operation 70, collectively referred to as a final cooling operation. In particular, the tubing string 90 is air cooled and then water cooled to a temperature less than about 200 degrees Fahrenheit. In the air cooling operation 65 and/or the water cooling operation 70, for example, the tubing string 90 is slowly cooled by air and/or water to bring down the temperature of the tubing string 90 for final tube sizing, inspection/testing, and/or coiling operations. The final cooling operation may include any number of air cooling and/or water cooling operations.
From the final cooling operation, the tubing string 90 is continuously fed into a final tube sizing operation 75 to conduct final tube sizing. In the final tube sizing operation 75, the outer diameter of the tubing string 90 is refined to a desired outer diameter. For example, the outer diameter of the tubing string 90 may be reduced (in one or more stages by one or more series of sizing rollers) during the final tube sizing operation 75. The tubing string 90 may be sized to have a substantially uniform outer diameter, a substantially uniform inner diameter, and/or a substantially uniform wall thickness. After the final tube sizing operation 75, the tubing string 90 undergoes a final inspection/testing operation 80 where one or more non-destructive tests are conducted on the tubing string 90 to verify that the specified material properties and weld seam quality of the tubing string 90 have been attained.
From the final inspection/testing operation 80, the tubing string 90 may proceed to a coating operation 82, the embodiments of which are described in more detail below. The coating operation 82 may result in reduced friction forces whenever the tubing string 90 is implemented in a wellbore for coiled tubing operations. For example, the coating operation 82 may reduce the friction between the tubing string 90 and any casing that is disposed downhole in an oil and gas wellbore. The coating operation 82 is more reliable at reducing friction than other efforts that can result in the following problems: a damaged tubing string 90; a weak tubing string 90; a limited horizontal reach of tubing string 90; a limited length of tubing string 90 that may be transported on a spool; operational inconsistencies; and/or undesirably high operational costs for the oil and gas operations. The coating operation 82 also provides corrosion resistance for the tubing string 90, whereas other manufacturing processes do not.
From the final inspection/testing operation 80, or the coating operation 82 (if applicable), the tubing string 90 is continuously fed into a tube coiling operation 85. In the tube coiling operation 85, the tubing string 90 is continuously coiled onto a spool, such as the spool 300 illustrated in
The method 100 is not limited to the sequence or number of operations illustrated in
The specified material properties of the tubing string 90 formed by the method 100 may be substantially uniform across substantially the entire length of the tubing string 90 but may vary within normal tolerance ranges. The tubing string 90 may be formed of any type of metallic material, such as steel.
In one or more embodiments, a tubing string having a length within a range of about 10,000 feet to about 30,000 feet may be formed using the method 100 described herein. In one or more embodiments, a tubing string having an outer diameter of up to about 5.5 inches may be formed using the method 100 described herein. In one or more embodiments, a tubing string having an inner diameter within a range of about 1 inch to about 5 inches may be formed using the method 100 described herein. In one or more embodiments, a tubing string having at least one of an outer diameter and an inner diameter of up to about 5.5 inches may be formed using the method 100 described herein.
In one or more embodiments, a tubing string having a yield strength within a range of about 80,000 psi to about 190,000 psi may be formed using the method 100 described herein. In one or more embodiments, a tubing string having a tensile strength within a range of about 90,000 psi to about 190,000 psi may be formed using the method 100 described herein. In one or more embodiments, a tubing string having a hardness within a range of about 18 Rockwell HRC to about 45 Rockwell HRC may be formed using the method 100 described herein.
At step 330, the tubing string optionally may be heated to a first temperature prior to applying a coating to the outer surface of the tubing string. At step 340, a coating is applied to the outer surface of the tubing string. The coating has a surface energy that is lower than a surface energy of the outer surface of the tubing string. At step 350, the tubing string may optionally be cooled to a second temperature after the coating is applied to the outer surface of the tubing string. The coating method 301 is not limited to the sequence or number of steps illustrated in
Blasting the outer surface of the tubing string with an abrasive material creates an anchor profile that extends into the outer surface of the tubing string. The anchor profile may extend to a depth that is up to about 0.010 inches at step 327. In one or more embodiments, the anchor profile includes one or more divots, one or more longitudinal recesses (e.g., scratches), one or more dents, and/or one or more dimples that are created on the outer surface of the tubing string at step 326. The divots, dents, dimples, and/or longitudinal recesses may be regularly shaped, irregularly shaped, non-linear, linear, circular, rectangular, square, and/or may be arcuate in shape.
The embodiments illustrated in step 320 are not limited to the sequence or number of steps illustrated in
Specifically, at step 341a, an application portion is selected on the outer surface of the tubing string, and at step 341b, a coating is applied to the application portion that has a surface energy lower than a surface energy of the outer surface of the tubing string. The coating may be applied according to various methods or processes, including but not limited to spraying, painting, flocking, rolling, extruding, and/or depositing the coating. In one example, the coating covers at least a part of the outer surface that is within the application portion. In one example, the coating covers substantially an entirety of the outer surface of the tubing string that is disposed within the application portion. As discussed below with respect to
The coating may include any suitable material that has a surface energy lower than a surface energy of the outer surface of the tubing string to help reduce friction in a wellbore system. In one embodiment, the coating includes a powder coating. The coating can also include a liquid coating. In one example, the coating includes one or more of a fusion bonded epoxy, a polytetrafluoroethylene material, a high density polypropylene, a high density polyethylene, an abrasion resistant overlay (ARO) material, and/or any other suitable polymeric material. As shown at step 348, the coating may be applied to the outer surface of the tubing string for up to 30 seconds. As shown at step 349, the coating is applied to the outer surface of the tubing string such that the layer of coating has a thickness within a range of about 0.002 inches to about 0.02 inches. For example, the coating may have a thickness within a range of about 0.004 inches to about 0.006 inches.
In one or more embodiments, the coating is flocked onto the outer surface of the tubing string at step 343, and an electrostatic charge fuses the coating to the outer surface of the tubing string to form the coating. Flocking can include spraying the coating or using any other process of depositing the coating onto the outer surface of the tubing string. In one or more embodiments, the electrostatic charge is applied to the tubing string. In one or more embodiments, the electrostatic charge is an inherent property of the coating. For example, the electrostatic charge may be an inherent property of the coating when the coating is applied to a carbon steel. In one or more embodiments, the coating includes a powder coating. The coating may be applied with tools known in the art, such as spray nozzles and flocking equipment. Additionally, an electrostatic charge may be applied with known devices, such as electrodes. As shown at step 348, step 343 may be performed such that the coating is applied to the outer surface of the tubing string for up to 30 seconds. As shown at step 349, step 343 may be performed such that a layer of coating is applied to the outer surface of the tubing string, and the layer of coating has a thickness within a range of about 0.002 inches to about 0.02 inches. For example, the coating has a thickness within a range of about 0.004 inches to about 0.006 inches.
In one or more embodiments, a first element is sprayed on the outer surface of the tubing string at step 342, and a second element is sprayed on the outer surface of the tubing string such that the second element creates a chemical reaction with the first element, thereby curing the first element to the outer surface of the tubing string and forming a coating. As shown at step 348, step 342 may be performed such that the coating is applied to the outer surface of the tubing string for up to 30 seconds. As shown at step 349, step 342 may be performed such that a layer of coating is applied to the outer surface of the tubing string, and the layer of coating has a thickness within a range of about 0.002 inches to about 0.02 inches. For example, the coating has a thickness within a range of about 0.004 inches to about 0.006 inches.
In one or more embodiments, the coating is rolled onto the outer surface of the tubing string at step 346, such that the coating bonds to the outer surface of the tubing string. The coating may be rolled with machines known in the art, such as rollers. As shown at step 348, step 346 may be performed such that the coating is applied to the outer surface of the tubing string for up to 30 seconds. As shown at step 349, step 346 may be performed such that a layer of coating is applied to the outer surface of the tubing string, and the layer of coating has a thickness within a range of about 0.002 inches to about 0.02 inches. For example, the coating has a thickness within a range of about 0.004 inches to about 0.006 inches.
In one or more embodiments, two or more materials are mixed together to form the coating at step 344, and the coating is sprayed onto the outer surface of the tubing string such that the coating bonds to the outer surface of the tubing string. As shown at step 348, step 344 may be performed such that the coating is sprayed to the outer surface of the tubing string for up to 30 seconds. As shown at step 349, step 344 may be performed such that a layer of coating is applied to the outer surface of the tubing string, and the layer of coating has a thickness within a range of about 0.002 inches to about 0.02 inches. For example, the coating has a thickness within a range of about 0.004 inches to about 0.006 inches.
In one or more embodiments, the coating is extruded onto the outer surface of the tubing string at step 347, such that the coating bonds to the outer surface of the tubing string. The coating may be extruded with machines known in the art, such as extruders. As shown at step 348, step 347 may be performed such that the coating is applied to the outer surface of the tubing string for up to 30 seconds. As shown at step 349, step 347 may be performed such that a layer of coating is applied to the outer surface of the tubing string, and the layer of coating has a thickness within a range of about 0.002 inches to about 0.02 inches. For example, the coating has a thickness within a range of about 0.004 inches to about 0.006 inches.
The embodiments illustrated in step 340 are not limited to the sequence or number of steps illustrated in
As illustrated in
In the embodiment shown, the coating 640 is applied to the outer surface 620 of the tubing string 601 that is within an application portion 660. The coating 640 is applied to cover substantially an entirety of the outer surface 620 of the tubing string 601 that is disposed within the application portion 660. The application portion 660 may include a first application section 670, a second application section 680, and a third application section 690. The first application section 670 may correspond to a portion of the tubing string 601 that will be disposed at least in part horizontally in a wellbore during a coiled tubing operation. The second application section 680 may correspond to a portion of the tubing string 601 that will be disposed at least in part vertically in the wellbore during the coiled tubing operation. The third application section 690 may correspond to a portion of the tubing string 601 that will be at least in part curved while disposed in the wellbore during the coiled tubing operation. The application portion 660, the first application section 670, the second application section 680, and the third application section 690 are disposed along an axial length L of the tubing string 601.
The portion of the coiled tubing string 600 shown in
It will be appreciated by those skilled in the art that the preceding embodiments are exemplary and not limiting. It is intended that all modifications, permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the scope of the disclosure. It is therefore intended that the following appended claims may include all such modifications, permutations, enhancements, equivalents, and improvements.
Number | Name | Date | Kind |
---|---|---|---|
2460657 | Robinson | Feb 1949 | A |
2982312 | Caplan et al. | May 1961 | A |
3278330 | Vau et al. | Oct 1966 | A |
4863091 | Dubois | Sep 1989 | A |
5515707 | Smith | May 1996 | A |
8052173 | Carcagno | Nov 2011 | B2 |
8258206 | Kanagasabapathy et al. | Sep 2012 | B2 |
8602113 | Jin et al. | Dec 2013 | B2 |
9528327 | Lux | Dec 2016 | B1 |
9541224 | Rowland et al. | Jan 2017 | B2 |
10364931 | Arumugam et al. | Jul 2019 | B1 |
20040237890 | Bour | Dec 2004 | A1 |
20100044110 | Bangru et al. | Feb 2010 | A1 |
20100206553 | Bailey et al. | Aug 2010 | A1 |
20110024103 | Storm, Jr. et al. | Feb 2011 | A1 |
20110220415 | Jin | Sep 2011 | A1 |
20110272139 | Van Den Brekel | Nov 2011 | A1 |
20120000643 | Bruun et al. | Jan 2012 | A1 |
20140021244 | DuBois | Jan 2014 | A1 |
20140287161 | Ertas et al. | Sep 2014 | A1 |
20180200770 | Rowland | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2013082134 | Jun 2013 | WO |
2017106956 | Jun 2017 | WO |
Entry |
---|
Elliot, K. J. et al., “Laboratory Evaluation of a Novel Metal Surface Treatment for Coiled Tubing Friction Reduction in Extended-Reach Wells”, SPE-189927-MS, Society of Petroleum Engineers, Mar. 2018, pp. 1-11. |
International Search Report and Written Opinion dated May 7, 2020 for Application No. PCT/US2020/017946. |
International Search and Written Opinion dated Apr. 4, 2018, corresponding to Application No. PCT/US2018/013988. |
Lauer, Robert S., “The Use of High Performance Polymeric Coatings To Mitigate Corrosion and Deposit Formation in Pipeline Applications”, 2007, pp. 1-8. |
Lauer, Robert S., “Advancements in the Abrasion Resistance of Internal Plastic Coatings”, Materials Performance, Jan. 2014, pp. 52-55. |
Afghoul, Ali Chareuf et al., “Coiled Tubing: The Next Generation”, Oilfield Review, 2004, pp. 38-57. |
A Breakthrough Pipeline Surface Treatment, Oceanlt, pp. 1-2 (available as of Jun. 2019). |
Corrosion Prevention and Control Worldwide, Materials Performance, Jan. 2018, pp. 1-80, vol. 57 No. 1. |
Ali, Naser et al., “A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties”, Journal of Nanomaterials, Jun. 4, 2018, pp. 1-33. |
Oceanit, “Flow Through Hydrophobic & Hydrophilic Pipes”, YouTube, Sep. 18, 2017, https://www.youtube.com/watch?v=sPoTJOGCKHU (last accessed Jan. 23, 2020). |
Oceanit, “Hydrophilic and Hydrophobic Treatment Demo | Oceanit Surface Treatments”, YouTube, Dec. 12, 2017, https://www.youtube.com/watch?v=sbuTk8hpnkc (last accessed Jan. 23, 2020). |
Oceanit, “DragX | Pipeline Surface Treatment | Oceanit Surface Treatments”, YouTube, Feb. 16, 2018, https://www.youtube.com/watch?v=qMZPDY1WI8Q (last accessed Jan. 23, 2020). |
Oceanit, “Hydrophobic Roll-Off Angle Test | Oceanit Surface Treatments”, YouTube, Feb. 27, 2018, https://www.youtube.com/watch?v=PKsqFAXVqzc (last accessed Jan. 23, 2020). |
Oceanit, “Omniphobic Wetting Behavior | Oceanit Surface Treatments”, YouTube, Mar. 1, 2018, https://www.youtube.com/watch?v=td50EevSgRs (last accessed Jan. 23, 2020). |
Non-Final Office Action dated Oct. 6, 2020 for U.S. Appl. No. 16/720,342. |
Number | Date | Country | |
---|---|---|---|
20200269276 A1 | Aug 2020 | US |