1. Field of the Invention
This invention relates to wireless-control of lighting systems and, in particular, to the configuration of components within the system.
2. Description of Related Art
Wireless control of a lighting system provides many advantages besides the ability of remotely switching and dimming lighting units in the system. For example, such control provides a convenient way of setting up and making changes to a lighting system and of improving energy utilization. Features such as emergency lighting control can be added without making any wiring changes. Energy utilization by the system can be regulated by a program which can be readily modified to meet changing demands.
In order for a wireless-controlled lighting system to be readily accepted by users, however, a number of considerations must be addressed. In particular, the system must be capable of unambiguously controlling selected lighting units in the system and of incorporating lighting units which are later added to the system.
Commonly, wireless-controlled lighting systems include transceivers in a remote control and in controlled lighting units for enabling communications between users and a lighting system. Such communications (typically via IR or RF signals) are utilized to configure the lighting units and the remote control into a wireless network. If the remote is used as a master control, it is used to configure the system by, for example, binding each of the lighting units to a respective button on the remote. In one known method for effecting such binding, RF communications are used whereby:
This system is relatively simple, but since RF signals pass through walls, it can cause the lighting of lighting units in locations that are not within sight of the user. Further, if the remote is lost or becomes inoperable the entire system must be reconfigured with a replacement remote. Also, the system requires that each lighting unit have a pre-assigned ID number, which is assigned to the lighting unit by the manufacturer. This limits the types of new and replacement lighting units that can be incorporated into the system.
In systems effecting master-slave control by utilizing a master device in one of the lighting units and slave devices in the other lighting units in the system, additional complications arise. The supplier of the devices must now provide two types of lighting unit—one with a master device and the other with a slave device. The installer of the lighting units must ensure that one, and only one, master device be installed in a wireless network. This places an additional burden on the supplier and increases the likelihood of errors in installation and set up of lighting systems.
It is an object of the invention to provide a method which avoids the foregoing disadvantages.
In accordance with the invention, a method is provided for associating a group of lighting units with respective control elements of a remote control, in a wireless-controlled lighting system. Each of the lighting units transmits a modulated light signal carrying a unique identification code for the lighting unit. The remote control is positioned at a location where it receives the modulated light signal from only one of the lighting units. A user activates a selected one of the control elements of the remote control to associate the control element with the lighting unit transmitting the modulated light signal being received. The remote control transmits to a control master a signal identifying the unique identification code for the lighting unit and the control element with which the lighting unit has been associated. Each of the above steps is repeated for each of the remaining lighting units in the group.
The lighting unit IDs are transmitted to the remote control via modulated light signals from the lighting units themselves, so there is no problem with inadvertently associating lighting units that are out of sight of the user. The associated lighting unit IDs and remote control elements are transmitted to a control master where they can be stored, thus simplifying reconfiguration of the system if the remote is lost. The method, in accordance with the invention, functions with both systems in which the lighting unit IDs are preassigned by the lighting unit manufacturer and systems in which the lighting unit IDs are generated at the time of configuration (e.g., in accordance with the initialization procedure used in DALI), so no limitation in this regard is placed on the system.
In a preferred form of the invention, each lighting unit in the group includes a convertible device which can operate as either a master or a slave. This avoids the need for both master and slave types of lighting units and decreases the likelihood of errors in installation and set up of lighting systems.
The central master CM functions to provide central control and monitoring of the entire lighting system (such as all rooms in a building or building complex), while each local control master LCM functions to provide control and monitoring within a local area (such as within one or more rooms of a building). The local control masters LCM communicate via respective wireless links LWL to lighting-system components including lighting units B, sensors S and remote controls R. The lighting units may be of any type or combination of types, e.g. fluorescent, high-intensity discharge (HID), light-emitting diodes (LEDs), incandescent etc. The sensors S provide the capability of detecting and reporting different types of information, e.g. the presence and/or motion of a person and ambient conditions such as light intensity and/or temperature. Each remote control R enables a user to select and control operation of lighting units within one or more local areas. Other types of system components, e.g. thermostats, powered window curtains, etc. may also be linked to the local control masters.
Each local control master LCM and the system components B, S and R to which it is 25 linked collectively forms a local-area network LAN. A master-slave wireless linking is established between each local control master LCM and the components B, S and R. This is achieved by including a master device in each LCM and including a slave device in each of the components B, S, and R. Similarly, a master-slave wireless linking may be established between the central master CM and each of the local control masters LCM by including a master device in the CM and a slave device in each LCM.
Generally, each local control master LCM functions to establish and coordinate operation of the respective LAN by, for example, identifying the slave devices within the LAN, initiating communications, and collecting information communicated within the respective LAN. Such collected information facilitates the formation of a wide-area network including several or all of the LANs and enables the association of a substitute remote control R to a LAN in the event that an original remote control becomes lost or inoperable.
The lighting unit circuitry shown in
The remote control R of
The user interface 38 includes circuitry for detecting remote control inputs from the user, e.g., via push buttons, a touch screen, voice etc.
In operation, each lighting unit already has a unique ID code, which is assigned to it either by the manufacturer or generated at the time the lighting unit is installed and joins the respective local area network LAN. The method, in accordance with the invention, of associating the lighting unit with the remote readily operates with either type of ID assignment. In the preferred embodiment, which is illustrated in the flow chart of
In the normal mode, the remote functions to control the operation of the lighting units by transmitting RF commands to the local control master LCM in response to user inputs. These inputs are effected by having the user select and activate control elements on the remote. For example, the user could touch the word “OFF” and then a selected symbol on a touch screen of the remote which is associated with a respective one of the lighting units. This will effect transmission of an OFF command along with the symbol associated with the lighting unit. Upon receipt of this command, the local control master LCM will look up the ID code of the lighting unit associated with the symbol and transmit an OFF command to the respective lighting unit. Alternatively, a single control element could be selected and used to effect changing the state (ON or OFF) and the brightness of a respective lighting unit associated with the control element. For example, if the control element is a button on the remote control, the state of the respective lighting unit could be changed by momentarily depressing the button or the brightness of the light produced by the unit could be changed by simply holding down the button to effect a continuous change in brightness and releasing the button then the desired brightness is reached.
In accordance with another embodiment of the invention, the transceiver 22 and the micro-controller 26 in each lighting unit B is adapted to selectively function as either a local control master or as a slave device. This can be very simply done by incorporating in the micro-controller for each lighting unit both the software utilized by the slave devices and that utilized by the local control master. This enables the local control master to be incorporated in any one of the lighting units by simple activating the corresponding software. As is shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/05946 | 12/11/2003 | WO | 6/19/2005 |
Number | Date | Country | |
---|---|---|---|
60434577 | Dec 2002 | US |