Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system

Information

  • Patent Grant
  • 9902572
  • Patent Number
    9,902,572
  • Date Filed
    Thursday, September 22, 2016
    7 years ago
  • Date Issued
    Tuesday, February 27, 2018
    6 years ago
Abstract
A method of configuring a laboratory automation system is presented. The position of a laboratory station is detected automatically. A laboratory sample distribution system and a laboratory automation system adapted to perform such a method are also presented.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to EP 15188661.1, filed Oct. 6, 2015, which is hereby incorporated by reference.


BACKGROUND

The present disclosure relates to a system and method of configuring a laboratory automation system, the laboratory automation system comprising a laboratory sample distribution system and at least one laboratory station.


Known laboratory sample distribution systems are typically used in laboratory automation systems in order to transport samples contained in sample containers between different laboratory stations. Such a laboratory sample distribution systems typically provide for a high throughput and for reliable operation.


In order to provide for the possibility to deliver samples or sample containers to laboratory stations using a laboratory sample distribution system, laboratory stations are typically placed adjacent to a transport plane of the laboratory sample distribution system. However, it has been recognized that the laboratory stations have to be placed exactly at a specific position adjacent to the transport plane in order to provide for a reliable transfer of samples or sample containers. As transport planes of sample distribution systems can have quite large dimensions, this requires an accurate metering of large distances in order to position a laboratory station correctly.


Therefore, there is a need for a system and method of configuring a laboratory automation system that allows for easy configuration.


SUMMARY

According to the present disclosure, a method of configuring a laboratory automation system is presented. The laboratory automation system can comprise a laboratory sample distribution system and at least one laboratory station. The laboratory station can have a handover position. The laboratory sample distribution system can comprise a number of sample container carriers adapted to carry one or more sample containers. Each sample container carrier can comprise at least one magnetically active device. The laboratory sample distribution system can also comprise a transport plane adapted to support the sample container carriers, a number of electro-magnetic actuators stationary arranged below the transport plane, the electro-magnetic actuators adapted to move sample container carriers on top of the transport plane by applying a magnetic force to the sample container carriers, a number of position sensors distributed over the transport plane and adapted to sense magnetic fields generated by the magnetically active devices, and a control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths. The laboratory station can be placed adjacent to the transport plane. The method can comprise placing a reference magnet in a specified position relationship with the handover position of the laboratory station over the transport plane, detecting the position of the reference magnet on the transport plane using the position sensors, and determining one of the electro-magnetic actuators as a handover electro-magnetic actuator based on the detected position.


Accordingly, it is a feature of the embodiments of the present disclosure to provide for a system and method of configuring a laboratory automation system that allows for easy configuration. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE DRAWING

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawing, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates a laboratory automation system according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawing that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A method of configuring a laboratory automation system is presented. The laboratory automation system can comprise a laboratory sample distribution system and at least one laboratory station. The laboratory station can have one or more handover positions. The handover position can typically be a position configured to transfer samples or sample containers between the laboratory station and a transport plane located besides the laboratory station or adjacent to the laboratory station. Thus, the handover position can be a position inherent to the laboratory station that can be relevant for interaction with the laboratory sample distribution system.


The laboratory sample distribution system can comprise a number of sample container carriers adapted to carry one or more sample containers. Each sample container carrier can comprise at least one magnetically active device. It can further comprise a transport plane adapted to support the sample container carriers and a number of electro-magnetic actuators. The electro-magnetic actuators can be stationary arranged below the transport plane typically in rows and columns and can be adapted to move a sample container carrier on top of the transport plane by applying a magnetic force to the sample container carrier.


The laboratory sample distribution system can further comprise a number of position sensors typically equally distributed over the transport plane and adapted to sense magnetic fields generated by the magnetically active devices. It can further comprise a control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths.


The laboratory station can be placed adjacent to the transport plane.


The method can comprise placing a reference magnet in a specified position relationship with the handover position of the laboratory station over the transport plane (e.g. placing the reference magnet exactly at the handover position of the laboratory station). The placing may be performed by an operator manually or automatically by a dedicated device. The method can also comprise detecting the position of the reference magnet on the transport plane using the position sensors and defining or determining one of the electro-magnetic actuators as a handover electro-magnetic actuator based on the detected position.


The above steps may be repeated for each of a plurality of handover positions, if the laboratory station has a plurality of handover positions.


The reference magnet may, for example, be embodied as a permanent magnet.


Alternatively or additionally, an electromagnet can be used. By using an electromagnet, a pattern of bits can be send to the laboratory automation system by turning on and off the electromagnet. The defined or determined handover electro-magnetic actuator may be optically visualized. If, for example, LEDs positioned under a light transmitting transport plane are assigned to the electro-magnetic actuators, the LED assigned to the handover electro-magnetic actuator may be activated.


The determining of one of the electro-magnetic actuators as a handover electro-magnetic actuator based on the detected position may comprise: calculating a distance between (each of) the electro-magnetic actuators and the detected position and determining the electro-magnetic actuator having the minimal distance to the detected position as the handover electro-magnetic actuator.


A handover electro-magnetic actuator can be determined based on the actual position of the laboratory station, basically without manual intervention. For such reason, there can no longer be a need to place the laboratory station at a predetermined position adjacent to the transport plane. In other words, the configuring logic can be inversed. Instead of aligning the laboratory station with respect to the laboratory sample distribution system, the handover electro-magnetic actuator of the laboratory sample distribution system can be aligned with respect to the laboratory station. The laboratory station can be placed adjacent to the transport plane at a basically arbitrary position. The relevant handover position can be determined automatically and the handover electro-magnetic actuator can be selected accordingly. This can significantly reduce the time needed to set up and configure a laboratory automation system.


The handover electro-magnetic actuator can typically be configured or determined such that sample containers or sample container carriers can be moved to the handover electro-magnetic actuator for transfer of samples or sample containers between the laboratory station and the transport plane. In other words, the handover electro-magnetic actuator can be an electro-magnetic actuator selected out of a plurality of electro-magnetic actuators based on the handover position of the laboratory station at its actual place.


The sample containers can typically be designed as tubes made of glass or transparent plastic and typically can have an opening at an upper end. The sample containers can be used to contain, store and transport samples, such as blood samples or chemical samples.


The transport plane can also be denoted as transport surface. The transport plane can support the sample container carriers, what can also be denoted as carrying the sample container carriers.


The electro-magnetic actuators can typically be built as electromagnets, having a solenoid surrounding a ferromagnetic core. These electro-magnetic actuators may be energized in order to provide for a magnetic field that can be used to move or drive the sample container carriers. For that purpose, the at least one magnetically active device in each sample container carrier may be a permanent magnet. Alternatively or additionally, an electromagnet can be used.


The control device can typically be a microprocessor, a microcontroller, a field programmable gate array, a standard computer, or a similar device. In a typical embodiment, the control device can comprise a processor and storage. Program code can be stored in the storage in order to control the behavior of the processor when the storage code is executed on the processor.


The sample container carriers can typically be adapted to move in two dimensions on the transport plane. For that purpose, the electro-magnetic actuators may be arranged in two dimensions below the transport plane. The electro-magnetic actuators may be arranged in a grid or matrix having rows and columns along which the electro-magnetic actuators can be arranged.


According to one embodiment, the position of the reference magnet can be determined in the same way as a position of a sample container carrier. This can allow, for example, for the use of identical algorithms for determining the position of the reference magnet and the sample container carrier. It can be understood that detection of a position of a sample container carrier can be a typical functionality of a laboratory sample distribution system according to the prior art.


According to one embodiment, the position of the reference magnet can be determined by the control device. This can allow for a simple integration of the position determination.


According to an embodiment, the reference magnet can be part of the laboratory station. This can increase accuracy and simplify operation.


According to an embodiment, the reference magnet can be part of a position determining device held by a gripping device of the laboratory station. The position determining device can, for example, be a pen-shaped object having a permanent magnet. Especially, the position determining device can be shaped similarly or identically to a sample container. This can allow for the gripping device to handle the position determining device identically or similarly to a sample container for the purpose of position determination.


According to an embodiment, the method can further comprise placing the position determining device in the specified position relationship using the gripping device being performed before detecting the position. For example, the position determining device can be stored in the laboratory station or, in a case of an engineer being charged with configuring the laboratory automation system and can be used just for the case of definition of the handover position.


According to an embodiment, detecting the position can be performed after a, for example, manual, input to the control device indicating final placement of the laboratory station. This can provide for a high degree of certainty for the control device that the laboratory station and the corresponding reference magnet can be in their final and correct position.


A laboratory sample distribution system is also presented. The laboratory sample distribution system can comprise a number of sample container carriers adapted to carry one or more sample containers. Each sample container carrier can comprise at least one magnetically active device. The laboratory sample distribution system can further comprise a transport plane adapted to support the sample container carriers.


The laboratory sample distribution system can further comprise a number of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators can be adapted to move the sample container carriers on top of the transport plane by applying a magnetic drive or move force to the sample container carriers.


The laboratory sample distribution system can further comprise a number of position sensors, e.g. Hall sensors, distributed over the transport plane and adapted to sense magnetic fields generated by the magnetically active devices.


The laboratory sample distribution system can further comprise a control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers can move along corresponding transport paths.


The control device of the laboratory sample distribution system can further be configured to perform a method as described above.


The control device can be embodied as a microprocessor, microcontroller, computer or other programmable device. The control device can, for example, comprise a processor and storage. Program code can be stored in the storage in order to make the control device to perform a method as described herein when executed by the processor.


The control device can be adapted to activate the electro-magnetic actuators such that the sample container carriers move simultaneously and independently from one another along pre-calculated routes.


A laboratory automation system is also presented. The laboratory automation system can comprise a laboratory sample distribution system and at least one laboratory station. With respect to the laboratory sample distribution system, all embodiments and variations as discussed herein can be applied.


A laboratory automation system is also presented, wherein the laboratory automation system can be configured using a method. With regard to the method, all embodiments and variations as discussed herein can be applied.


A laboratory station can be a pre-analytical, analytical and/or post-analytical (laboratory) station. The laboratory sample distribution system can be adapted to transport the sample container carriers and/or sample containers between the laboratory stations. The laboratory stations may be arranged adjacent to the laboratory sample distribution system.


Pre-analytical stations may be adapted to perform any kind of pre-processing of samples, sample containers and/or sample container carriers.


Analytical stations may be adapted to use a sample or part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte exist.


Post-analytical stations may be adapted to perform any kind of post-processing of samples, sample containers and/or sample container carriers.


The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, and a sealing/desealing station.


It can be noted that after the handover electro-magnetic actuator has been identified, a further determination of the handover position with a significantly higher spatial resolution can be performed.


A gripping device can be assigned to a laboratory sample distribution system having a transport plane and a plurality of electro-magnetic actuators positioned below the transport plane. The handover position may be assigned to a handover electro-magnetic actuator. The determination of a handover position of the gripping device may be performed by a method comprising the following steps: grabbing, by the gripping device, a position determining device such that the position determining device can be held fixedly by the gripping device. The position determining device can comprise a magnetically active device. The method can also comprise positioning the position determining device, while being held by the gripping device, on (over) the transport plane, activating the handover electro-magnetic actuator such that it can generate a magnetic field interacting with a magnetic field generated by the magnetically active device such that an attractive force can be applied on the position determining device, moving the position determining device, while being held by the gripping device, by the attractive force to a first position, detecting the first position, and determining the handover position based at least in part on the first position.


According to an embodiment, the handover position can be determined as being identical to the first position.


According to an embodiment, determining the handover position can comprise moving the position determining device, by the gripping device, on the transport plane in each of a group of directions for a given amount of displacement, every time starting from the first position, to a respective intermediate position, after each step of moving in a direction, moving the position determining device while being held by the gripping device to a respective further position by the attractive force, detecting each respective further position, and determining the handover position based at least in part on the respective further positions.


According to an embodiment, the group of directions can comprise two, three or four directions.


According to an embodiment, all directions contained in the group of directions can be arranged with equal angle between each two circularly neighboring directions.


According to an embodiment, the given amount of displacement can be less than about 10 mm. According to another embodiment, the given amount of displacement can be less than about 5 mm. According to yet another embodiment, the given amount of displacement can be less than about 3 mm.


According to an embodiment, the handover position can be determined as a center of a polygon defined by the further positions.


According to an embodiment, the handover electro-magnetic actuator can be deactivated before each step of moving the position determining device in one of the directions and can be reactivated after that step.


According to an embodiment, the first position and/or the further positions can be represented by planar coordinates on the transport plane after being detected.


According to an embodiment, the step of positioning, by the gripping device, the position determining device on the transport plane can be performed such that the gripping device can be positioned over or besides the handover electro-magnetic actuator.


According to an embodiment, the step of positioning the position determining device, while being held by the gripping device, on the transport plane can be performed manually.


According to an embodiment, electro-magnetic actuators surrounding the handover electro-magnetic actuator can be activated such that they generate respective magnetic fields interacting with the magnetic field generated by the magnetically active device such that a repulsive force can be applied on the position determining device at least during each step of moving the position determining device by the attractive force.


According to an embodiment, the position determining device can comprise a number of rolls, or ball-bearings, for contacting the transport plane.


Referring initially to FIG. 1, FIG. 1 shows a laboratory automation system 10. The laboratory automation system 10 can comprise a laboratory station 20 and a laboratory sample distribution system 100. It may be noted that the laboratory station 20 is shown only exemplarily, and that typical laboratory automation systems can comprise a plurality of laboratory stations 20.


The laboratory sample distribution system 100 can comprise a transport plane 110. On the transport plane 110, sample container carriers 140 can move. A sample container carrier 140 can carry a sample container 145, which can be embodied as a typical laboratory sample tube. It can be noted that a typical laboratory sample distribution system 100 can comprise a plurality of sample container carriers 140, and that the single sample container carrier 140 is only shown exemplarily in FIG. 1.


Each sample container carrier 140 can comprise a magnetically active device in the form of a permanent magnet. The permanent magnet is not visible in FIG. 1 because it can be located inside the sample container carrier 140.


Under the transport plane 110, a plurality of electro-magnetic actuators 120 can be arranged. The electro-magnetic actuators 120 can be embodied as solenoids. Each electro-magnetic actuator 120 can comprise an associated ferromagnetic core 125. The electro-magnetic actuators 120 can be adapted to generate magnetic fields used to move the sample container carrier 140 over the transport plane 110.


The laboratory sample distribution system 100 can comprise a plurality of position sensors 130. The position sensors 130 can be distributed over the transport plane 110. The position sensors 130 can be embodied as Hall sensors and can measure the magnetic field generated by the permanent magnet of the sample container carrier 140.


Both the electro-magnetic actuators 120 and the position sensors 130 can be electrically connected to a control device 150. The control device 150 can be configured to drive the electro-magnetic actuators 120 such that they can generate appropriate magnetic fields in order to move the sample container carrier 140 over the transport plane along a corresponding transport path. By the position sensors 130, the control device 150 can monitor the actual position of the sample container carrier 140.


The laboratory station 20 can be positioned adjacent to the transport plane 110. The laboratory station 20 can comprise a gripping device 22. The gripping device 22 can typically be used for transfer of sample containers 145 between the laboratory station 20 and the transport plane 110. In the state shown in FIG. 1, the gripping device 22 can hold a position determining device 24. The current position of the position determining device 24 can define a handover position of the laboratory station 20.


The position determining device 24 can comprise a magnetically active device in the form of a permanent magnet. The permanent magnet can serve as a reference magnet and can be sensed by the position sensors 130 in the same way as the permanent magnet of the sample container carrier 140. Thus, the control device 150 can also be aware of the position of the reference magnet comprised in the position determining device 24.


After the laboratory station 20 has been placed adjacent to the transport plane 110, the laboratory automation system 10 can be configured as follows.


The gripping device 22 holding the position determining device 24 comprising the reference magnet can be placed at the desired handover position of the laboratory station 20 over the transport plane 110.


The control device 150 can comprise a button 152. The button 152 can be pressed by an operator when the laboratory station 20 has reached its final position adjacent to the transport plane 110.


After the control device 150 has detected that the button 152 has been pressed, the control device 150 can start the calibration of the laboratory automation system 10. If the reference magnet is embodied as an electromagnet, the electromagnet may be energized when the button 152 is pressed.


First, the control device 150 can detect the position of the reference magnet using the position sensors 130. In the depicted embodiment, the control device 150 can detect that the position determining device 24 (or the reference magnet of the position determining device 24) can be positioned over a specific one of the electro-magnetic actuators 120. Thus, the control device 150 can determine this specific electro-magnetic actuator as the handover electro-magnetic actuator 122. In case the reference magnet is not placed exactly over one of the electro-magnetic actuators 120, the handover electro-magnetic actuator 122 may be defined as the electro-magnetic actuator having a minimal distance to the reference magnet.


If the laboratory station 20 would have been placed at another position adjacent to the transport plane 110, the control device 150 can determined another handover electro-magnetic actuator accordingly. This can eliminate the need to place the laboratory station 20 at a predetermined position.


The control device 150 can move sample container carriers 140 to that handover electro-magnetic actuator 122 if a sample or a sample container 145 carried by the sample container carrier 140 is to be transferred to the laboratory station 20. Accordingly, a sample or a sample container 145 can be transferred from the laboratory station 20 using the handover electro-magnetic actuator 122.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A method of configuring a laboratory automation system, the laboratory automation system comprising a laboratory sample distribution system and at least one laboratory station, wherein the laboratory station has a handover position and the laboratory sample distribution system comprises a number of sample container carriers adapted to carry one or more sample containers, wherein each sample container carrier comprises at least one magnetically active device, a transport plane adapted to support the sample container carriers, a number of electro-magnetic actuators stationary arranged below the transport plane, the electro-magnetic actuators adapted to move sample container carriers on top of the transport plane by applying a magnetic force to the sample container carriers, a number of position sensors distributed over the transport plane and adapted to sense magnetic fields generated by the magnetically active devices, and a control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths, wherein the laboratory station is placed adjacent to the transport plane, the method comprising: placing a reference magnet in a specified position relationship with the handover position of the laboratory station over the transport plane;detecting the position of the reference magnet on the transport plane using the position sensors; anddetermining one of the electro-magnetic actuators as a handover electro-magnetic actuator based on the detected position.
  • 2. The method according to claim 1, wherein the position of the reference magnet is determined in the same way as a position of the sample container carriers.
  • 3. The method according to claim 1, wherein the position of the reference magnet is determined by the control device.
  • 4. The method according to claim 1, wherein the reference magnet is part of the laboratory station.
  • 5. The method according to claim 1, wherein the reference magnet is part of a position determining device held by a gripping device of the laboratory station.
  • 6. The method according to claim 5, further comprising, placing the position determining device in the specified position relationship using the gripping device before detecting the position.
  • 7. The method according to claim 1, wherein detecting the position is performed after an input to the control device indicating final placement of the laboratory station.
  • 8. The method according to claim 1, wherein the handover position is a position configured to transfer samples or sample containers between the laboratory station and the transport plane.
  • 9. The method according to claim 1, wherein the handover electro-magnetic actuator is configured such that sample containers or sample container carriers are moved to the handover electro-magnetic actuator for transfer of samples or sample containers between the laboratory station and the transport plane.
  • 10. A laboratory sample distribution system, the laboratory sample distribution system comprising: a number of sample container carriers adapted to carry one or more sample containers, wherein each sample container carrier comprises at least one magnetically active device;a transport plane adapted to support the sample container carriers;a number of electro-magnetic actuators stationary arranged below the transport plane, the electro-magnetic actuators adapted to move sample container carriers on top of the transport plane by applying a magnetic force to the sample container carriers;a number of position sensors distributed over the transport plane and adapted to sense magnetic fields generated by the magnetically active devices; anda control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths, wherein the control device is configured to perform a method according to claim 1.
  • 11. A laboratory automation system comprising a laboratory sample distribution system according to claim 10 and at least one laboratory station.
  • 12. A laboratory automation system, wherein the laboratory automation system is configured using a method according to claim 1.
Priority Claims (1)
Number Date Country Kind
15188661 Oct 2015 EP regional
US Referenced Citations (152)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9593970 Sinz Mar 2017 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130034410 Heise et al. Feb 2013 A1
20130126302 Johns et al. May 2013 A1
20130153677 Leen et al. Jun 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140234065 Heise et al. Aug 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276776 Riether Oct 2015 A1
20150276777 Riether et al. Oct 2015 A1
20150276778 Riether et al. Oct 2015 A1
20150276781 Riether et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20150360876 Sinz Dec 2015 A1
20150360878 Denninger et al. Dec 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160054344 Heise et al. Feb 2016 A1
20160069715 Sinz Mar 2016 A1
20160077120 Riether Mar 2016 A1
20160097786 Malinowski et al. Apr 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131309 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170160299 Schneider et al. Jun 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
Foreign Referenced Citations (87)
Number Date Country
EP 3153867 Apr 2017 CH
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
9636437 Nov 1996 WO
03042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2011138448 Nov 2011 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2012170636 Dec 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
Related Publications (1)
Number Date Country
20170096307 A1 Apr 2017 US