Method of connecting a circular concrete-filled steel tubular column to a reinforced concrete footing

Information

  • Patent Grant
  • 10563402
  • Patent Number
    10,563,402
  • Date Filed
    Thursday, December 27, 2018
    5 years ago
  • Date Issued
    Tuesday, February 18, 2020
    4 years ago
Abstract
The method of connecting a circular concrete-filled steel tubular column to a reinforced concrete footing provides a process for constructing a circular concrete-filled steel tubular column anchored in a reinforced concrete footing. A tubular member is partially embedded in a cavity formed in a block of reinforced concrete, such that a pair of flanges thereof is positioned adjacent to and above a base surface of the cavity. A steel tube is partially inserted into the cavity, such that rotation of the steel tube will cause the pair of flanges to interlock with a pair of slots at the lower end of the steel tube, locking the steel tube in place with respect to the tubular member and the block of reinforced concrete. The cavity is filled with concrete grout to secure the column, and the steel tube is filled with concrete to form the circular concrete-filled steel tubular column.
Description
BACKGROUND
1. Field

The disclosure of the present patent application relates to construction techniques, and particularly to a method and system for connecting a circular concrete-filled steel tubular (CFST) column to a reinforced concrete (RC) footing.


2. Description of the Related Art

Concrete-filled steel tubes (CFSTs) are structural members for carrying heavy loads and are often used as piers in bridges and as columns in high-rise buildings. The steel tubes serve as formwork and reinforcement for the concrete fill, eliminating the need for flexible reinforcing cages, shoring and temporary formwork, as well as increasing safety and reducing labor costs, which consequently speeds up construction. The steel tube provides confinement and shear strength to the concrete fill, thus increasing the load carrying capacity of the CFST columns. Further, the use of CFST columns provides large economic savings by increasing the usable floor area through a reduction in the required cross-sectional size. This latter consideration is very important in the design of high-rise buildings in cities, where the cost of letting spaces is extremely high.


One of the most challenging problems in the adoption of CFSTs in construction is related to the connection detailing between CFST columns with other structural members, particularly the foundation. Although several types of connections are presently employed, there remains a need for connections that can be integrated with precast elements, which are also able to develop the strength and stiffness required for carrying gravity loads, as well as the large ductility cycles required for seismic designs. Thus, a method of connecting a circular concrete-filled steel tubular column to a reinforced concrete footing solving the aforementioned problems is desired.


SUMMARY

The method of connecting a circular concrete-filled steel tubular column to a reinforced concrete footing provides a process for constructing a circular concrete-filled steel tubular column anchored in a reinforced concrete footing. A block of reinforced concrete having opposed top and bottom surfaces has a cavity formed therein. The cavity has an open upper end, a closed lower base surface, and at least one sidewall defined within the block of reinforced concrete. The open upper end of the cavity is contiguous with the top surface of the block of reinforced concrete and has an elliptical contour. The closed lower base surface is circular, such that the length of a major axis of the elliptical upper opening of the cavity is equal to the diameter of the circular base of the cavity. The at least one sidewall may have a corrugated internal surface.


A tubular member is partially embedded in the block of reinforced concrete at the base of the cavity. The tubular member has a cylindrical sidewall and open upper and lower ends, and further includes at least one pair of diametrically opposed flanges mounted on the open upper end, extending radially outward therefrom. The tubular member is embedded in the block of reinforced concrete such that the at least one pair of diametrically opposed flanges are raised slightly above the base of the cavity.


The column is a steel tube having a cylindrical sidewall. An elliptical base plate is mounted, e.g., by welding, on the open lower end of the cylindrical column. The elliptical base plate has a central circular opening aligned with and in open communication with the open lower end of the cylindrical sidewall of the column. At least one pair of diametrically opposed flange slots or brackets project from the lower surface of the elliptical base plate. The length of the major axis of the elliptical base plate is equal to the length of the major axis of the elliptical opening of the upper end of the cavity.


After hardening of the reinforced concrete block forming the footing, the base of the steel tube column is inserted into the cavity in the reinforced concrete footing such that the at least one pair of diametrically opposed flange slots are positioned circumferentially adjacent to the at least one pair of diametrically opposed flanges. The steel tube is then rotated about its axis so that the at least one pair of diametrically opposed flanges interlock with the at least one pair of flange slots projecting from the column's elliptical base plate. This rotation locks the steel tube in place with respect to the tubular member embedded in the footing. The cavity is then filled with concrete grout, and the steel tube is filled with concrete to form the circular concrete-filled steel tubular column.


These and other features of the present invention will become readily apparent upon further review of the following specification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a top view of a reinforced concrete footing for use in a method of connecting a circular concrete-filled steel tubular column to a reinforced concrete footing shown before first-stage concreting, the footing being a block of reinforced concrete having a cavity formed therein.



FIG. 1B is a section view taken along lines 1B-1B of FIG. 1A.



FIG. 1C is a section view taken along lines 1C-1C of FIG. 1A.



FIG. 2A is a top view of the reinforced concrete footing of FIG. 1A after embedding metal tube with quadrant flanges in concrete in the base of the cavity.



FIG. 2B is a section view taken along lines 2B-2B of FIG. 2A.



FIG. 2C is a section view taken along lines 2C-2C of FIG. 2A.



FIG. 3 is a perspective view of the tubular member embedded at the base of the cavity of the reinforced concrete footing.



FIG. 4 is a partial perspective view of a circular steel tubular column used in the method of connecting a circular concrete-filled steel tubular column to a reinforced concrete footing, showing the base plate welded to the base of the column and the flange slots projecting therefrom.



FIG. 5A is a top view of the reinforced concrete footing after hardening of the first-stage concrete and insertion of the base of the tubular column into the cavity.



FIG. 5B is a section view taken along lines 5B-5B of FIG. 5A.



FIG. 5C is a section view taken along lines 5C-5C of FIG. 5A.



FIG. 6A is a top view of the reinforced concrete footing after 90° rotation of the circular steel tubular column.



FIG. 6B is a section view taken along lines 6B-6B of FIG. 6A.



FIG. 6C is a section view taken along lines 6C-6C of FIG. 6A.



FIG. 7 is a partial side view in section of the reinforced concrete footing and the circular steel tubular column inserted therein after filling the cavity with concrete grout.



FIG. 8 is a partial side view in section of the reinforced concrete footing and the circular steel tubular column inserted therein after filling the column with concrete.





Similar reference characters denote corresponding features consistently throughout the attached drawings.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The method of connecting a circular concrete-filled steel tubular (CFST) column to a reinforced concrete footing provides a process for constructing a circular concrete-filled steel tubular column anchored in a reinforced concrete footing. As shown by the forms for the reinforced concrete footing in FIGS. 1A-1C, the footing will have opposed bottom and top surfaces 12, 14, respectively, and a cavity 16 formed therein. The cavity 16 will have an open upper end 18, a closed lower base surface 20, and at least one sidewall 22. As shown in FIGS. 1B and 1C, the at least one sidewall may have a corrugated internal surface 24 for increasing the pullout interface shear, and thus the bending moment, to secure the base of the column in the footing. The open upper end 18 of cavity 16 is contiguous with the top surface 14 of the footing and has an elliptical contour. As shown in FIG. 1A, the elliptical contour of open upper end 18 has a major axis with length D1 and a minor axis with length D2. The closed base 20 of the cavity 16 is circular, and the length D1 of the major axis of the open upper end 18 is equal to the diameter D3 of the circular base 20 of the cavity 16.


The major axis of open upper end 18 is aligned with the axis of maximum column moment. Rebars on the cavity surface (i.e., rebars embedded within the reinforced concrete footing in the surface defining the cavity 16) are formed in the shape of the cavity 16, which may be achieved by leaving a uniform clear cover on the surface of the cavity 16. In the cavity 16, the transition from the elliptical open upper end 18 to the circular, closed lower base 20 can be made in the reinforced concrete footing by using retrievable forms. The depth of the cavity 16 may vary from 50% to 150% of the outer diameter of the circular CFST column, depending upon the connection design. However, it should be understood that other geometries may be utilized. For example, the elliptical contour of the open upper end 18 may be replaced by a rectangular contour with rounded corners. In this case, the diameter of the circular closed base surface 20 would be equal to the length of the rectangle defining the open upper end 18.


As shown in FIGS. 2A-2C, a tubular member 30 is partially embedded in the block of reinforced concrete 10 defining the footing. As best shown in FIG. 3, the tubular member 30 has a cylindrical sidewall 32 and open upper and lower ends 34, 36, respectively. At least one pair of diametrically opposed flanges 38 are mounted on the open upper end 34 and extend radially outward therefrom. The flanges 38 shown in FIG. 2A are quadrant flanges, subtending an arc of 90° measured from the center of the cavity 16, and extend from the tubular member 30 on opposite sides of the major axis of the elliptical opening 18 (as shown in FIG. 1A), being bisected by a plane extending through the minor axis of the elliptical opening. Returning to FIGS. 2A-2C, the tubular member 30 is embedded in the block of reinforced concrete 10 such that the at least one pair of diametrically opposed flanges 38 are raised slightly above the closed lower base 20 of the cavity 16, about the thickness of the steel plate of flange slots or brackets 52 (or flanges 38, if same thickness of plate is used). In FIGS. 2A-2C and 3, a single pair of flanges 38 are shown, each spanning approximately 90° of are. It should be understood that multiple pairs of flanges 38 may be mounted on and about open upper end 34. For example, six such flanges may be used, rather than the exemplary single pair of flanges 38 shown in FIGS. 2A-2C and 3. The radial length of each flange 38 may vary from 10% to 25% of the outer diameter of the cylindrical sidewall 32 of the tubular member 30. The length of the minor axis D2 of the elliptical contour of open upper end 18 of cavity 16 (FIGS. 1A-1C) is slightly more (by about twice the thickness of plate used for making flange slots 52) than the outer diameter of the pair of flanges. Further, in order to provide additional securement between the tubular member 30 and the reinforced concrete block 10, the lower end 36 of tubular member 30 may also be provided with flanges, anchoring members or the like. Further examples of anchoring for the tubular member 30 include shear studs welded to the inner or outer faces of cylindrical sidewall 32 (or both faces), and/or forming perforations in the cylindrical sidewall 32.


As shown in FIG. 4, the column is a steel tube 40 having a cylindrical sidewall 42 and an elliptical base plate 48 mounted (welded) on the base or open lower end 46 of the cylindrical sidewall 42. The diameter of tubular member 30 (FIG. 3) is equal to the diameter of steel tube 40. The tubular member 30 may also be cut from steel tube 40. The elliptical base plate 48 has a central circular opening 50 in open communication with and the same diameter as the open lower end 46 of the cylindrical sidewall 42. At least one pair of diametrically opposed brackets or flange slots 52 project from, and are welded to, the lower surface 51 of the elliptical base plate 48, such that the at least one pair of brackets 52 define at least one pair of slots 54. The flange slots or brackets 52 are bisected by the major axis of the elliptical base plate 48. The length of the major axis of the elliptical base plate 48 is equal to the length D1 of the major axis of the elliptical contour of the open upper end 18 of cavity 16, allowing the base plate 48 to be inserted through the elliptical open upper end 18, as shown in FIGS. 5A-5C. The outer diameter of the pair of brackets 52 is equal to the length D2 of the minor axis of the elliptical contour of the open upper end 18 of cavity 16. The inner diameter of the pair of flange slots is equal to the outer diameter of the pair of flanges 38 (FIGS. 2A-2C). The length D1 of the major axis of the elliptical contour of the open upper end 18 of cavity 16 is such that the radial projection of the elliptical base plate 48 from sidewall 42 along major axis varies from 30% to 60% of the outer diameter of the cylindrical sidewall 42 of the tubular member 40.


After hardening of the reinforced concrete block, the steel tube 40 is partially inserted into cavity 16 such that the at least one pair of diametrically opposed flange slots 52 are positioned circumferentially adjacent to and below the at least one pair of diametrically opposed flanges 38. As noted above, only a single exemplary pair of flanges 38 is shown, although multiple pairs of such flanges may be provided. The number of pairs of flanges selected should match the number of flange slots or brackets 52 mounted on the lower surface of the base plate 48. For example, if three pairs of flanges 38 are provided on tubular member 30, then a corresponding three pairs of flange slots or brackets 52 (defining three corresponding slots 54) will be mounted to the lower surface 51 of elliptical base plate 48.


As shown in FIGS. 6A-6C, the steel tube 40 is then rotated about its axis such that the at least one pair of diametrically opposed flanges 38 interlock with the at least one pair of slots 54 defined by the at least one pair of diametrically opposed flange slots or brackets 52. This rotation locks the steel tube 40 in place with respect to the tubular member 30 and the reinforced concrete block 10, the flanges 38 resisting rotation of the column about the major axis of the elliptical opening 18 of the cavity 16. However, the rotation of the column about the minor axis will also be resisted, but the resistance will be less than that about the major axis. The use of multiple pairs of flanges, along with the matching number of flange slots or brackets 52 mounted on the lower surface of the base plate 48, will be useful when the bending moment about the minor axis is also large (i.e., in the case of biaxial bending), since it improves the moment resisting capacity about the minor axis. The cavity 16 is then filled with non-shrinking concrete grout 50, as shown in FIG. 7, to further secure the column 40 in the footing 10. After the non-shrinking concrete grout 50 is hardened, the steel tube 40 is filled with concrete 44, as shown in FIG. 8, to form the circular concrete-filled steel tubular column. It should be noted that FIGS. 7 and 8 show sections along the minor axis of the elliptical contour of open upper end 18 of cavity 16.


The bending of the CFST column under the action of lateral loads creates a force that tries to pull the circular CFST column out of the cavity 16. The above-described connection resists this pull, providing moment-resisting capacity to the column base through the mechanical interlock between the mating steel flanges 38 of the tubular member 30 and the slots 54 of the flange slots or brackets 52, which are welded underneath the elliptical base plate 48. This interlocking contributes significantly in resisting the column moments.


Further, even after a potential failure of the mechanical interlock (or severe deformation in the interlocking elements), the elliptical column base plate cannot be removed because the concrete grout 50 resists upward movement due to the negatively sloping interface between the reinforced concrete 10 and concrete grout 50, i.e., the sloping transition created by the elliptical open upper end 18 to the closed lower base 20, and their respective diameters, prevents concrete grout 50 from being drawn out of cavity 16. Further, as noted above, the corrugated interface between the reinforced concrete 10 and the cement grout 50, created by corrugation of sidewall 22, also resists the upward push of the cement grout 50.


In the above, it should be noted that proper clearances must be maintained between the coupling members for their free movement, although it is important to note that the clearances should not be too loose in order to avoid large slackness. Further, it should be noted that, as an alternative, the cavity, as described above, may be substantially cylindrical, allowing the corresponding column base plate to be circular rather than elliptical. As a further alternative, the flange-based interlocking connection may be removed altogether, thus removing the need for embedding the small steel tube in the first-stage concrete of the reinforced concrete footing. In this alternative, there would, correspondingly, be no need for the flange slots to be welded to the base plate of the steel tubular column. The column moment (i.e., bending) in this case would be resisted by the resistance provided by the negative slope of the cavity against pulling-off of the elliptical base plate.


It is to be understood that the method of connecting a circular concrete-filled steel tubular column to a reinforced concrete footing is not limited to the specific embodiments described above, but encompasses any and all embodiments within the scope of the generic language of the following claims enabled by the embodiments described herein, or otherwise shown in the drawings or described above in terms sufficient to enable one of ordinary skill in the art to make and use the claimed subject matter.

Claims
  • 1. A tubular column and reinforced concrete footing combination for facilitating connection of a circular concrete-filled steel tubular (CFST) column to a reinforced concrete footing, comprising in combination: a reinforced concrete block footing having a body defining a top surface, a cavity having an opening at the top surface and extending into the body, the cavity having an upper end, a lower end, a sidewall, and a bottom defined by the body, the footing having a plurality of flanges raised above the bottom of the cavity, wherein the opening and the upper end of the cavity are elliptical, having a major axis and a minor axis, each of the axes defining a length, further wherein the lower end and the bottom of the cavity are circular, having a diameter equal to the length of the major axis of the opening of the cavity; andan elongated tubular column having a top end, a bottom end, and a base plate extending transversely across the bottom end of the column, the base plate having a plurality of flange slots projecting therefrom, the column being adapted for being filled with concrete, the base plate extending across the bottom end of the tubular column is elliptical, having dimensions conforming to the opening and upper end of the cavity;whereby, the bottom end of the column may be inserted into the cavity in the footing, and the column may be rotated about an axis thereof to interlock the flanges in the footing with the flange slots projecting from the base plate of the column to connect the tubular column to the reinforced concrete footing.
  • 2. The tubular column and reinforced concrete footing combination according to claim 1, wherein said elongated tubular column is cylindrical, having a diameter up to the length of the minor axis of the elliptical opening of the cavity.
  • 3. The tubular column and reinforced concrete footing combination according to claim 1, wherein said plurality of flanges comprises at least two quadrant flanges and said plurality of flange slots comprises at least two flange slots.
  • 4. The tubular column and reinforced concrete footing combination according to claim 1, wherein said footing further comprises a cylindrical steel reinforcement tube disposed in the body of said footing atop the bottom of the cavity.
  • 5. The tubular column and reinforced concrete footing combination according to claim 1, wherein said footing has a depth between 50% and 150% of the diameter of said tubular column.
  • 6. The tubular column and reinforced concrete footing combination according to claim 1, wherein said cavity has a corrugated sidewall.
  • 7. The tubular column and reinforced concrete footing combination according to claim 1, further comprising concrete grout filling the cavity between the sidewall and said tubular column.
  • 8. The tubular column and reinforced concrete footing combination according to claim 1, further comprising concrete filling said tubular column.
US Referenced Citations (6)
Number Name Date Kind
3913953 Archer Oct 1975 A
5012622 Sato et al. May 1991 A
5492429 Hodges Feb 1996 A
5826387 Henderson et al. Oct 1998 A
20040040224 Dayton Mar 2004 A1
20150225917 Goto Aug 2015 A1
Foreign Referenced Citations (1)
Number Date Country
04285211 Oct 1992 JP
Non-Patent Literature Citations (2)
Entry
Lehman et al., “Foundation connections for circular concrete-filled tubes,” Journal of Constructional Steel Research, vol. 78, Nov. 2012 (Year: 2012).
Lehman et al., “Foundation connections for circular concrete-filled tubes,” Journal of Constructional Steel Research, vol. 78, Nov. 2012, pp. 212-225.