This application claims the benefit, under 35 U.S.C. § 365 of International Application PCT/FR02/02043, filed Jun. 14, 2002, which was published in accordance with PCT Article 21(2) on Jan. 9, 2003 in French and which claims the benefit of French patent application No. 0108626, filed Jun. 29, 2001.
The invention relates to the connection of a plasma display panel to means for supplying and driving this panel.
Referring to
The plasma panel itself comprises a front tile 3 and a rear tile 4, leaving between them plasma discharge regions, and is provided, between these tiles:
On the tile 3, the connection ends of the electrodes of one series are all located on an edge 5 opposite to that 6 on which all the connection ends of the electrodes of the other series are located.
The supply circuit for each pair of adjacent electrodes 7, 8 of two different series forms a current loop from the supply and drive means, passing via a first electrode 7 and then the second electrode 8 of the pair.
All these components are inserted into a box 20.
The rear tile 4 of the plasma panel is fastened to the metal support plate 1 by means of an adhesive layer 16 having a thickness sufficient to compensate for the difference in thermal expansion coefficient between the tile and the plate; the adhesive for this layer 1 is designed, in a manner known per se, to ensure heat transfer of the heat dissipated in the panel during operation into the plate 1 which, because it is made of metal, possesses a better coefficient for heat exchange with the air circulating in the box 20.
Document JP11-041545 (FUJITSU) also discloses an image display device of this type, in which the printed-circuit board 2, supporting the supply and drive means, specifically extends over the entire surface of the panel and is directly bonded to the support plate 1 so as to shorten the connections between the ends of the electrodes on the edges of the panel and the supply and drive means on either side of the support plate 1; no transverse conductor is inserted between the panel and the support plate.
Between adjacent electrodes 7, 8 of two different series of electrodes of this first array there is therefore a succession of sustain discharge regions, which generally correspond to a line of picture elements or pixels to be displayed; this array of electrodes may also serve for addressing in cooperation with the electrodes of the second array; thus, the electrodes of the first series may be sustain and addressing electrodes and the electrodes of the second series are then only sustain electrodes.
These electrodes of the first array are generally coplanar.
This sustain array generally comprises only two series of electrodes so that the adjacent electrodes 7, 8 of different series are grouped in pairs; according to other embodiments, the first array may comprise three series and the coplanar electrodes are then associated in triads.
As shown in
The means 13, 14 for supplying and driving the discharges generally comprise:
As the first array of electrodes 7, 8 serves for sustaining the discharges, it is in this array that most of the electrical power needed for displaying the images is dissipated, and it is therefore in this array that significant electrical losses may occur.
During the discharge sustain steps when the device is in operation, discharges spring up between the electrodes of each pair 7, 8 and large currents flow in these loops.
The conventional method, shown schematically in
The transverse conductor 21 passing from one edge of the support plate 1 to the opposite edge is located here on the same side of the support plate 1 as the supply and drive means 13, 14; according to an embodiment described in the document EP 1 065 694 (SAMSUNG), this transverse conductor may be located on the same internal face of the tile 3 that carries the electrodes, that is to say on the opposite side from the supply and drive means 13, 14 with respect to the support plate 1 (see conductor 12′a in
It should be noted that, in these conventional methods of connecting a plasma panel to its supply means, the first conductor 11 and the second conductor 12, which both pass from one side of the support plate 1 to the other, are placed on opposed edges of the panel since the ends of the electrodes that they serve are on opposed edges.
To avoid the aforementioned drawbacks, the abovementioned document JP 2000-089723 discloses, with reference to
It should be pointed out that, according to this other connection and supply method for a plasma display panel, the first conductor 11 and the second conductor 12, which both pass from one side of the support plate 1 to the other, are placed here at the same edge 5 of the panel.
However, this solution has a serious drawback: the discharge regions 9 located near this edge 5 are subjected to an impedance very different from that of the discharge regions 10 located near the opposite edge 6 of the panel; the difference corresponds to the impedance of the portions of electrodes 7, 8 lying between these regions 9, 10.
Because of this impedance difference, the operation of the cells of the panel differs over the entire length of the electrodes 7, 8 and the light characteristics of the discharge regions differ greatly from one edge 5 of the panel to the other edge 6, thereby seriously impairing the quality of the image display.
The object of the invention is to remedy simultaneously all the drawbacks of the solution shown in
For this purpose, the subject of the invention is an image display device comprising:
The array of electrodes located between the tiles is generally placed on the internal face of one of the tiles, generally the front tile; the electrodes are generally covered with a dielectric layer; instead of being placed on the internal face, at least one of the series of electrodes may be placed between the tiles in the thickness of barrier ribs defining the discharge regions of the panel.
According to one embodiment, several electrodes of the same series are connected to the supply and drive means via the same transverse conductor.
The supply circuit for each pair of adjacent electrodes of two different series forms a current loop from the supply and drive means, passing through a first electrode, and then the second electrode of the pair; by virtue of the invention, the current loop of the supply circuit for each pair of the panel does not surround the metal plate, unlike the solutions described in the documents JP 2000-089723 and JP 11-041545; the Eddy current losses in the metal plate are thus limited, while obtaining discharge regions having identical impedances between the adjacent electrodes over their entire length; the losses are thus limited without degrading the image display quality.
Since according to the invention the transverse conductors are inserted between the rear tile of the panel and the support plate, it is no longer necessary for them to be shifted away from the light emission region, as in the abovementioned document EP 1 065 694, thereby allowing them to be positioned so as to advantageously limit the vertical cross section of the current loops of the various pairs of electrodes and the drawbacks associated therewith.
By virtue of the transverse conductors, the entire supply for the electrodes is brought back to the same edge of the panel so that it is then possible, as described in the invention JP 2000-089723 as shown in
These transverse conductors are preferably grouped together in several ribbons of conductors, each located at a position corresponding approximately to the mean position of the electrodes to which the conductors of this ribbon are connected; since these electrodes generally correspond to lines of the panel, this position generally corresponds to a height on the panel; in the case of the use of three ribbons, the first would, for example, be positioned at ⅙ of the height of the panel, the second, for example, at mid-height and the third, for example, at ⅚ of the height.
In the case of the transverse conductors being grouped together in several ribbons thus separated from one another, the transverse return conductor for the return of the supply current from a pair of electrodes is therefore in general not located at the same height as this pair of electrodes but slightly offset with respect to this pair, and the corresponding current loop also has a vertical cross section of large area and generates an electromagnetic field having a large horizontal component; to avoid this drawback, each transverse conductor connected to a single electrode corresponding to one pair of adjacent electrodes is preferably positioned on the panel at approximately the same height as the said pair; preferably, these transverse electrical conductors then form a single conducting ribbon inserted between the rear tile and the metal plate.
Preferably, this conducting ribbon or these conducting ribbons also serve as a means for fastening the panel to the said metal support plate; for this purpose, it will be possible to use, for example, one or more ribbons having both faces adhesive; the thickness of the conducting ribbon advantageously allows the differences in thermal expansion between the rear tile of the panel and the metal support plate to be reduced.
According to an advantageous embodiment of the invention, since the supply circuit for each pair has, at the start of the supply and drive means, a pair of supply conductors, each of which is connected to an electrode of the pair, the device according to the invention includes common-mode filtering means surrounding each pair of conductors.
The common-mode filter is designed in a manner known per se to reduce the transmission of the high-frequency electromagnetic interference coming from the electronic supply and drive means and transmitted in a common mode to the plasma panel.
Preferably, these common-mode filtering means comprise a tube made of a ferromagnetic material surrounding this pair of supply conductors.
During operation of the panel, at the position of this core, the currents flowing in each conductor of the same pair are opposed, thereby allowing this ferromagnetic tube to act as a common-mode filter and making it possible to reduce the transmission of high-frequency electromagnetic interference coming from the electronic supply and drive means and transmitted to the plasma panel.
Preferably, these said common-mode filtering means are implanted at the edge of the panel on which all the supply conductors for the electrodes emerge.
Since the opposite ends of the transverse electrical conductors from the ends for connection to the electrodes of the same series emerge at the same edge of the panel as the connection ends for the electrodes of the other series, it is very easy at this point to implant the filtering means since the supply conductors for each pair of electrodes are located there, near each other, and can be easily surrounded by a common-mode ferromagnetic filter tube.
In general, the plasma panel also includes a second array of electrodes for addressing the discharges, these intersecting the electrodes of the first array at the panel discharge regions.
The invention will be more clearly understood from the description that follows, given by way of non-limiting example, and with reference to the appended figures in which:
To simplify the description and bring out the differences and advantages afforded by the invention compared with the prior art, identical references will be used for the elements that provide the same functions.
Apart from the elements already described with regard to the front tile 3 and rear tile 4 of the plasma panel, the metal support plate 1 and, at the back of this plate, an electrical supply 13′ serving for supplying and driving the discharges in the panel,
Thus, for each pair of adjacent electrodes 7, 8, the current loop of the supply circuit for this pair does not surround the metal plate 1.
The device illustrated in
Preferably, it will be endeavoured to minimize the internal area of the supply current flow loop of the panel for the purpose of reducing as far as possible the electromagnetic radiation induced by this loop; for this purpose, it is preferable to position each transverse conductor 21′ connected to an electrode 8 corresponding to a pair of adjacent electrodes 7, 8 approximately at the same height as the said pair.
Number | Date | Country | Kind |
---|---|---|---|
01 08626 | Jun 2001 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR02/02043 | 6/14/2002 | WO | 00 | 12/22/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/003400 | 1/9/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6118214 | Marcotte | Sep 2000 | A |
6662793 | Allen et al. | Dec 2003 | B1 |
20020043621 | Aitken | Apr 2002 | A1 |
20050029958 | Morizot et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
3326182 | Jul 1983 | EP |
1065694 | Jan 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20040169472 A1 | Sep 2004 | US |