Method of connecting an UMTS mobile radio to a network

Information

  • Patent Grant
  • 7684832
  • Patent Number
    7,684,832
  • Date Filed
    Monday, May 19, 2003
    21 years ago
  • Date Issued
    Tuesday, March 23, 2010
    14 years ago
Abstract
To achieve a shortening of the initial synchronization time and/or extension of the stand-by time with a method of connecting an UMTS mobile radio to a network, the UMTS mobile radio receives and stored in one or more time-limited RF receive windows the signals that are subsequently evaluated when the HF receiver is switched off.
Description

The invention relates to a method of connecting an UMTS mobile radio to a network, more particularly of shortening the initial synchronization time and/or extending the standby time of an UMTS mobile radio, the UMTS mobile radio, when its HF receiver is switched on, receiving signals from the base stations around it on various physical channels of the UMTS (Universal Mobile Telecommunication System), which signals are particularly used for initial synchronization, neighbor cell measurement and paging reception and occur in certain frames of the UMTS.


Such a method is known from technical specification 3 GPPTS 25.214 V3.10.0 (2002 to 2003), more particularly Annex C, p. 49, and from the title WCDMA for UMTS, Radio Access For Third Generation Mobile Communications, Harri Holma, Antti Toskala, John Wiley & Sons, Ltd., Chichester, N.Y., Weinheim, Brisbane, Singapore, Toronto.


Contrary to the GSM system, UMTS has CDMA (code-division multiple access). The information is then always simultaneously available in the various physical channels. The various physical channels are particularly used for the initial synchronization, for the neighbor cell measurement and the paging reception. The channels are in particular:


PSCH primary synchronization channel


SSCH secondary synchronization channel


CPICH common pilot channel


PICH paging indication channel


PCH paging channel,


where further channels are added for further functions which, however, may be ignored in this context.


With mobile radios the standby time, that is the period of time up to the necessary recharging of the battery, is an important property of use. Mobile radios usually switch to an energy-saving mode when there is no active speech or data connection. However, the mobile radio is to periodically receive information from the network to be informed of an incoming call and to establish changes of base stations in the environment. For this purpose the high-frequency (HF) receiver of the mobile radio is to be switched on. The standby time is determined by the power consumption of the HF receiver. The power consumption of the HF receiver is high compared to the other systems of the mobile radio. The shorter the HF receiving windows are the longer will be its availability.


The time necessary for an initial synchronization of the mobile radio is to be short so that the mobile radio, once it has changed its location, finds a network connection in minimal time and goes to the standby mode.


In UMTS mobile radios the greater part of the signal processing functions is usually implemented in real-time hardware. Due to the high data rate at the input of the digital baseband receiver of the UMTS mobile radio, the incoming data are processed as they come in (on the fly). Only the final results of the respective bills are stored. All processing steps which need information from previous steps are executed sequentially. During this time the HF receiver is to be switched on. Since the sequential processing requires a long time, the RF receive window is to be equally long. Due to the high power consumption when the HF receiver is switched on, the standby time is reduced accordingly. This holds both for the initial synchronization and for the neighbor cell measurement and paging reception to be executed during the standby time.


It is an object of the invention in a method of the type defined in the opening paragraph to shorten the initial synchronization time and/or lengthen the standby time.


The above object is achieved by the features of the characterizing part of claim 1.


In a time-limited receive window the signals of all interesting channels are received simultaneously and stored. At the beginning of the receive window the HF receiver is switched on. At the end of the receive window the HF receiver is switched off. The evaluation of the stored signals then takes place when the HF receiver is switched off, thus in a time in which the power consumption of the mobile radio is comparatively low. All in all this leads to a lengthening of the standby time. The digital signal processing thus takes place off-line.


In addition to the shortening of the initial synchronization time and the lengthening of the standby time there are the following further advantages:


a) since the same receiving data are used for the various processing steps, it is very simple to keep intermediate results consistent, which is problematic with a real-time hardware solution because the channel conditions may change significantly between the processing steps;


b) because of the off-line processing and data buffering, the digital signal processing can clearly be scaled more flexibly and planned and executed in time than in conventional UMTS mobile radios. This allows to carry out the processing efficiently in dependence on the respective conditions.


The RF receive window preferably has the time length of a frame of the UMTS. This frame is 10 ms long. The RF receive window, however, may also have a variable length of time in dependence on the receiving conditions.


These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.





In the drawings:



FIG. 1 shows the idealized time ratios with a usual UMTS initial synchronization;



FIG. 2 shows the time ratios with an initial synchronization according to the invention;



FIG. 3 shows the usual time ratios periodically recurring during the standby time for a paging signal and a neighbor cell measurement for UMTS;



FIG. 4 shows the ratios occurring during the standby time with a method according to the invention;



FIG. 5 shows a further possibility where it is assumed that the respective mobile radio is not called by the paging signal and that the measuring period of the neighbor cell measurement is longer than the paging period.





In FIGS. 1 to 4 only three relevant neighbor cells are assumed to simplify the drawing. In practice, up to 32 neighbor cells are to be captured.


The basic method for the initial synchronization in conventional UMTS mobile radios is the following (compare FIG. 1):


1. The user switches the mobile radio on at a random instant t0. In a first step the primary synchronization channel (PSCH) is evaluated to find all propagation paths of all the base stations or cells respectively in the environment. This first step is made in any one of the predefined UMTS frames that lasts 10 ms. With the data information transmitted over the PSCH it is not possible yet to distinguish the various base stations and establish the start of the UMTS frame.


2. Therefore, propagation paths that seem to be effective as regards their power are selected from the number of propagation paths found in the first step. Based on this selection the scrambling code group and the position in time of the frame i.e. the frame timing of the base station that belongs to the selected paths is identified in the secondary synchronization channel (SSCH). The evaluation of the SSCH starts around instant t1 after the first frame and lasts again 1 frame up to instant t2.


3. In a third step the selected paths are identified as regards their timing and as regards the scrambling code group of the respective base station (cell 1) via the common control channel, the so-called common pilot channel (CPICH).


4. In a fourth step, beginning at instant t3, all the paths occurring in a certain time interval are detected with the aid of the CPICH. The paths found are struck off a path list and earmarked. Then said steps are executed for further paths of the neighboring base stations (cell 2, cell 3, cell 4) which lasts until instant t5. At instant t4 the initial synchronization has then been carried out. During the period of time T between instant t0 and t4 the HF receiver of the mobile radio is to be switched on. This time ideally lasts at least 7 frames i.e. 70 ms. In practice this may even be several minutes if the mobile radio in switched-off mode is brought within range of remote base stations.


In contrast to this, the initial synchronization according to the suggested solution is carried out in the following way (compare FIG. 2).


The user switches the UMTS mobile radio on at a random instant. After a certain build-up time at instant t0 a memory of the mobile radio receives all the information occurring in a single frame of the PSCH, SSCH, CPICH of the accepted four cells (compare frame buffering in FIG. 2). This takes place in the period of time t0 to t1, within a single frame i.e. 10 ms. At the instant t1 the HF receiver switches off. The period of time Ta between t0 and t1 is the receive window. The stored information is evaluated after the instant t1 in the mobile radio while the HF receiver is switched off.


Comparison of the FIGS. 1 and 2 shows that with the method shown in FIG. 2 the necessary receive window is shorter by a factor of 7 than with the method shown in FIG. 1.


In the standby mode most components of an UMTS mobile radio are normally switched off to save current. They are activated periodically for receiving pagings i.e. call announcements and system measurements with respect to neighbor cells. The basic method in the commercial UMTS receivers is in essence the following (compare FIG. 3):


1. The mobile radio periodically resynchronizes in the standby mode with the current base station or cell of the network determined during the previous initial synchronization. In the following example this is cell 1. Generally, not always a complete initial synchronization is carried out because this complete initial synchronization is not necessary, but only a path search is made on the CPICH (compare FIG. 3, CPICH propagation path detection on serving cell). This operation lasts 1 frame i.e. 10 ms.


2. Subsequently, the paging reception is executed (compare FIG. 3 paging reception), which takes place on a higher-order paging channel, on the paging indication channel (PICH) and on the special paging channel, the so-called paging channel (PCH). The PICH relates to a group of mobile radios and the PCH then pages a single mobile radio from this group. The PCH completely contains the concrete identification number of the mobile radio to be paged.


A measurement of the neighbor cells cell 2, cell 3, cell 4 starts simultaneously with the evaluation of the paging signals on the channels PICH, PCH. The paging period lasts at least 8 frames (not shown in FIG. 3). In the method shown in FIG. 3 the HF receiver is to be switched on for at least four frames in a paging period that contains eight frames.


In the method according to the invention, on the other hand, the procedure is as follows (compare FIG. 4):


1. The HF receiver is switched on at a defined instant t0′ shortly before the necessary information of the PCH is transmitted by the base station.


2. After a build-on time of the receiver the complete information of a frame of the UMTS signal is received and stored in the mobile radio. This is effected between the instants t0′ and t1′ (compare FIG. 4 frame buffering).


3. The HF receiver is again switched off after the end of one frame, at t1′. The frame situated between t0′ and t1′ is stored. The information contained therein and dealing with the respective channels can then further be processed while the HF receiver is switched off (compare FIG. 4 processing time window).


4. The information contained in the PICH may be ignored because the necessary information is also available on the PCH.


The received data are used for resynchronization with the serving cell of the network. By means of the data received between t0′ and t1′ also the necessary UMTS system measurements of the neighbor cells are evaluated.


The comparison of the examples of embodiment described (compare FIGS. 3, 4) shows that with the method according to the invention shown in FIG. 4 the RF receive window is shorter by a factor of 4 than with the method shown in FIG. 3, which means a considerable lengthening of the standby time. The proposed solution allows the shortening of the RF receive window by the number of the neighbor cells. If, in addition, the gap between the PICH signal and the PCH signal is ignored, a further reduction of the switch-on time of the HF receiver can be achieved if the UMTS measuring period for the neighbor cell measurements is longer than the paging period (compare FIG. 5).


In FIG. 5 are shown a paging period PP which comprises 8 to 512 frames and a measuring period MP used for the neighbor cell measurement, which lasts 8 paging periods. PICH and PCH signals occur in each paging period. HF receive time windows (RF receive windows) are found in each PICH signal and only in one PCH signal of the measuring period MP. Further to the respective RF receive window, as also found in FIG. 4, the post-synchronization with the serving cell (compare FIG. 5 CPICH propagation path detection on serving cell), the paging evaluation (compare FIG. 5 paging processing) and the neighbor cell measurement (compare FIG. 5, CPICH system measurements on neighbor cells). The RF receive windows are 533 μs long at the most in PICH. The RF receive window has the length of a frame in PCH. After storage, the signals are processed off-line, as is described. The total RF receive time is 10 ms+7×533 μs i.e. 13.73 ms. Compared with the 8 frames (80 ms) which are needed for a full PCH reception, this is a further saving by the factor of 80/13.73=5.82.


The RF receive windows need not have the time length of one frame. They may also be shorter or longer or variable. For example, the RF receive window may be selected to be as long as the longest individual processing step lasts to completely store this information for the next evaluation.

Claims
  • 1. A method, comprising: connecting a mobile radio of a UMTS (Universal Mobile Telecommunication System) to a network, the mobile radio comprising an HF high-frequency) receiver, the connecting including: receiving signals from base stations on plural physical channels of the UMTS, which signals are particularly used for initial synchronization, neighbor cell measurement and paging reception and occur in certain frames of the UMTS, wherein signals lying in one or more RF (radio-frequency) receive windows are received by the mobile radio;storing in the mobile radio the received signals of the one or more RF receive windows;switching off the HF receiver after storing the received signals; andevaluating the stored signals in the mobile radio while the HF receiver is switched off, during which time no HF signals are received by the mobile radio; andbased on said evaluation, turning on the HF receiver and establishing a connection to the network.
  • 2. A method as claimed in claim 1, wherein the one or more RF receive windows each have a time length, and further comprising: determining which processing step lasts longest; andsetting the time length of each of the one or more RF receive windows to be equal to that of the determined processing step.
  • 3. A method as claimed in claim 1, wherein the one or more RF receive windows each have at most a time length of one frame of the UMTS.
  • 4. A method as claimed in claim 1, wherein the one or more RF receive windows each have a variable time length in dependence on receive conditions.
  • 5. A method as claimed in claim 1, wherein for an initial synchronization the HF receiver is switched on at a random instant and after a build-up time a frame of a UMTS signal from one of the base stations is received and stored.
  • 6. A method as claimed in claim 1, wherein in a standby mode of the mobile radio the HF receiver is periodically switched on at defined instants to receive paging signals (PICH, PCH) and carry out a neighbor cell synchronization while the defined instants are shortly before the reception of the PCH (paging channel) information.
  • 7. A method as claimed in claim 1, wherein a PICH (paging indication channel) is ignored whereby the PICH information is not received and stored, if a PCH (paging channel) is received and stored.
  • 8. A method as claimed in claim 1, wherein in response to when a measuring period in which a neighbor cell measurement takes place longer than a paging period, a PCH is received and stored and evaluated only once per measuring period and otherwise in each paging period only a PICH (paging indication channel) is stored and evaluated.
  • 9. A mobile radio, comprising: an HF (high-frequency) receiver configured to receive signals from base stations, the signals situated in one or more RF (radio-frequency) receive windows;a storage unit configured to store the received signals; andlogic configured to: switch off the HF receiver after the signals are stored;evaluate the stored signals while the HF receiver is switched off, during which time no HF signals are received by the mobile radio; andbased on said evaluation, turning on the HF receiver and establishing a connection to the network.
  • 10. The mobile radio of claim 9, wherein no HF signals are received by the mobile radio during a time period that lasts at least about several frames.
  • 11. The mobile radio of claim 9, wherein the one or more RF receive windows each have a time length, and wherein the logic is further configured to: determine which processing step lasts longest; andset the time length of each of the one or more RF receive windows to be equal to that of the determined processing step.
  • 12. The mobile radio of claim 9, wherein the mobile radio is part of a UMTS (Universal Mobile Telecommunication System) and the one or more RF receive windows each have at most a time length of one frame of the UMTS.
  • 13. The mobile radio of claim 9, wherein the one or more RF receive windows each have a variable time length in dependence on receive conditions.
  • 14. The mobile radio of claim 9, wherein for an initial synchronization the HF receiver is switched on at a random instant and after a build-up time a frame of the a UMTS (Universal Mobile Telecommunication System) signal from one of the base stations is received and stored.
  • 15. The method of claim 1, wherein no HF signals are received by the mobile radio during a time period that lasts at least about several frames.
  • 16. A method, comprising: connecting a mobile radio of a UMTS (Universal Mobile Telecommunication System) to a network, the mobile radio comprising an HF (high-frequency) receiver, the connecting including: receiving signals from base stations on plural physical channels of the UMTS, the signals lying in an RF (radio-frequency) receive window;storing in the mobile radio the received signals;switching off the HF receiver after storing the received signals; andevaluating the stored signals in the mobile radio while the HF receiver is switched off, during which time no HF signals are received by the mobile radio; andbased on said evaluation, turning on the HF receiver and establishing a connection to the network.
  • 17. The method of claim 16, wherein the RF receive window has at most a time length of one frame of the UMTS.
  • 18. The method of claim 16, wherein the RF receive window has a time length that depends on receive conditions.
  • 19. The method of claim 16, wherein in a standby mode of the mobile radio the HF receiver is periodically switched on at defined instants to receive paging signals (PICH, PCH) and carry out a neighbor cell synchronization while the defined instants are shortly before the reception of the PCH (paging channel) information.
  • 20. The method of claim 16, wherein a PICH (paging indication channel) is ignored whereby the PICH information is not received and stored, if a PCH (paging channel) is received and stored.
Priority Claims (1)
Number Date Country Kind
102 22 970 May 2002 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB03/01910 5/19/2003 WO 00 11/18/2004
Publishing Document Publishing Date Country Kind
WO03/100998 12/4/2003 WO A
US Referenced Citations (50)
Number Name Date Kind
5224152 Harte Jun 1993 A
5369798 Lee Nov 1994 A
5392287 Tiedemann et al. Feb 1995 A
5471655 Kivari Nov 1995 A
5574996 Raith Nov 1996 A
5640677 Karlsson Jun 1997 A
5745860 Kallin Apr 1998 A
5764651 Bullock et al. Jun 1998 A
5794137 Harte Aug 1998 A
5797094 Houde et al. Aug 1998 A
5799256 Pombo et al. Aug 1998 A
5878336 Cashen et al. Mar 1999 A
5940771 Gollnick et al. Aug 1999 A
5953677 Sato Sep 1999 A
6047200 Gibbons et al. Apr 2000 A
6067460 Alanara et al. May 2000 A
6069929 Yabe et al. May 2000 A
6138034 Willey Oct 2000 A
6151353 Harrison Nov 2000 A
6201966 Rinne et al. Mar 2001 B1
6212398 Roberts et al. Apr 2001 B1
6240304 Blankenstein et al. May 2001 B1
6311064 Bamburak et al. Oct 2001 B1
6385460 Wan May 2002 B1
6385469 Alperovich et al. May 2002 B1
6449494 Cashman Sep 2002 B1
6505058 Willey Jan 2003 B1
6535752 Dent Mar 2003 B1
6615033 Cragun Sep 2003 B1
6741836 Lee et al. May 2004 B2
6804542 Haartsen Oct 2004 B1
6862431 Richter Mar 2005 B2
6889067 Willey May 2005 B2
6904282 Cooper Jun 2005 B2
6968219 Pattabiraman et al. Nov 2005 B2
6973310 Neufeld Dec 2005 B2
7020102 Tuomainen et al. Mar 2006 B2
7035676 Ranta Apr 2006 B2
7158778 Sameer et al. Jan 2007 B2
7197341 Bultan et al. Mar 2007 B2
7295827 Liu et al. Nov 2007 B2
7305259 Malone et al. Dec 2007 B1
7330740 Bennett et al. Feb 2008 B2
7512423 Karaoguz Mar 2009 B2
7542437 Redi et al. Jun 2009 B1
20010028674 Edlis et al. Oct 2001 A1
20030058820 Spencer et al. Mar 2003 A1
20030153271 Brandt et al. Aug 2003 A1
20030207688 Nikkelen Nov 2003 A1
20050221869 Liu et al. Oct 2005 A1
Foreign Referenced Citations (1)
Number Date Country
WO 00 67399 Nov 2000 WO
Related Publications (1)
Number Date Country
20050164723 A1 Jul 2005 US