The present invention relates to a method of connecting electric signals between electronic apparatus, and more particularly to a method of connecting electric signals in which various signal terminals for connecting electric signals are integrated into a stackable connection terminal interface, and electric contacts on the connection terminal are separately pre-assigned to a different signal transmission, so that two or more connection terminals may be stacked while still own respective signal transmission path to ensure independent signal transmission without mutual interference.
Following the highly developed technology and the high demands for good applicability of commercial products, a plurality of products and techniques in connection with different electronic apparatus and portable electronic apparatus have been developed, including, for example, smart phones, personal digital assistants (PDAs), digital cameras, AV players, portable multimedia players (PMPs), etc. These electronic apparatus and portable electronic apparatus are generally provided at one side or at a bottom with various kinds of terminals or sockets, to which a charger, different peripherals, or a computer connection interface may be connected, so that the electronic apparatus may be recharged, used to output sound and/or image, or connected to a personal computer.
Please refer to
Please refer to
As can be found from
A primary object of the present invention is to provide a method of connecting electric signals between electronic apparatus, in which various signal terminals or sockets that are used to connecting electric signals are integrated into a stackable connection terminal interface, so that two or more connection terminals may be stacked for use without occupying a large space.
Another object of the present invention is to provide a method of connecting electric signals between electronic apparatus, in which electric contacts on each connection terminal are electrically connectable at two opposite ends to allow stacking of two or more connection terminals, and the electric contacts are separately pre-assigned to a different signal transmission path each, so that the stacked connection terminals may still own respective signal transmission path to ensure independent signal transmission without mutual interference, enabling the use of a plurality of uniformly structured connection terminals in signal connection.
To achieve the above and other objects, the method of connecting electric signals according to the present invention includes the steps of:
The joining element may be a magnetic adherence element, or a mortise-and-tenon joint.
With the signal connection method of the present invention, two or more uniformly structured connection terminals may be stacked to occupy only a limited space on an electronic apparatus while still own respective signal transmission path to ensure independent signal transmission without mutual interference.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
a and 3b are conceptual views showing the structure of a stackable connection terminal adopted by the method of connecting electric signals between electronic apparatus according to the present invention;
Please refer to
Please refer to
For the stackable connection terminal 2 adopted in the method of the present invention to electrically connect to the socket 11 on the electronic apparatus 1, the electric contacts 21 on the connection terminal 2 are separately pre-assigned to a different signal transmission path corresponding to the electric contacts 12 in the socket 11 on the electronic apparatus 1. In the illustrated embodiment of
It is understood the number of the electric contacts 12 in the socket 11 at the bottom of the electronic apparatus 1 and of the electric contacts 21 on the stackable connection terminal 2 may be increased depending on actual need, so as to provide independent transmission of video or other signal sources.
To connect electric signals between the electronic apparatus 1 and another desired electronic apparatus in the method of the present invention, a user needs only to electrically connect the stackable connection terminal 2 provided at an end of a connection interface for that desired electronic apparatus to the socket 11 at the bottom of the electronic apparatus 1. For example, when it is desired to recharge the electronic apparatus 1, simply connect a charger 31 to the socket 11. This is because the electric contacts 21a and 21b on the stackable connection terminal 2 of the charger 31 are pre-assigned as transmission contacts for recharging, allowing the charger 31 to be independently used for recharging.
When it is desired to use the electronic apparatus 1 to receive an audio signal while it is being recharged, the user need not to disconnect the connection terminal 2 of the charger 31 from the socket 11, but may directly stack the stackable connection terminal 2 of a headphone 32 on the stackable connection terminal 2 of the charger 31. At this point, the electric contacts 21 on the connection terminal 2 of the headphone 32 are in contact with and accordingly electrically connected to the electric contacts 21 on the connection terminal 2 of the charger 31, allowing the electric contacts 21a and 21b as well as the electric contacts 21c and 21d on the first connection terminal 2 to be independently used for recharging and transmitting signals to the headphone 32, respectively. Since the electric contacts 21 on the connection terminal 2 of the headphone 32 and of the charger 31 have been pre-assigned for transmitting different signals, electric signals to the headphone 32 and from the charger 31 are independently transmitted without conflicting with one another. That is, with the method of connecting electric signals between electronic apparatus according to the present invention, a user is allowed to recharge the electronic apparatus 1 and receive output audio signals from the electronic apparatus 1 at the same time.
The method of the present invention provides more flexibility in its application. For example, the electronic apparatus 1 may be further connected to a computer for data transmission while being recharged and used to transmit audio signals to a headphone. To do so, simply stack another stackable connection terminal 2 connected to a USB interface 33 on the stackable connection terminal 2 of the headphone 32. Since the electric contacts 21e, 21f, and 21g on these stackable connection terminals 2 are pre-assigned for transmitting USB signals, allowing the recharging, the transmission of audio signal source, and the transmission of USB signals to work synchronously but independently without causing mutual interference. That is, with the method of the present invention, the electronic apparatus 1 may be used to synchronously process and connect signals from three different interfaces, so as to achieve the purpose of multiprocessing with one single interface.
Please refer to
However, in another operable embodiment of the present invention shown in
To enable the implementation of the signal connection method of the present invention, the stackable connection terminals 2 in the stacked state are securely connected to one another via the joining elements 4 to ensure good electric contact therebetween. The joining elements 4 may be of a magnetic adherence structure, so that any two stacked connection terminals 2 are magnetically adhered to one another via the joining elements 4 provided at two opposite sides of the connection terminals 2, as shown in
According to the signal connection method of the present invention, various signal terminals or sockets that are used to connecting signals are integrated into a stackable connection terminal interface; each of the stackable connection terminals provides a plurality of signal transmission paths, and all the electric contacts on the connection terminals 2 are electrically connectable at both ends to enable sequential stacking of multiple stackable connection terminals; and the electric contacts on the stackable connection terminals are separately pre-assigned for a different signal transmission, so that the stacked connection terminals may still own respective signal transmission path to ensure independent signal transmission without mutual interference. Therefore, the signal connection method of the present invention not only enables the reduction of space occupied by different terminal interfaces, but also enables the use of uniformly structured connection interface.
The present invention has been described with some preferred embodiments thereof and it is understood that many changes and modifications in the described embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4856863 | Sampsell et al. | Aug 1989 | A |
5555332 | Dean et al. | Sep 1996 | A |
6352372 | Shahid | Mar 2002 | B1 |
6477437 | Hirota | Nov 2002 | B1 |
6572403 | Reimund et al. | Jun 2003 | B2 |
6854901 | Ouchi | Feb 2005 | B1 |
6908324 | Morley et al. | Jun 2005 | B1 |
7093351 | Kelley et al. | Aug 2006 | B2 |
7377034 | Thomason | May 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20090011652 A1 | Jan 2009 | US |