1. Technical Field
The present invention relates to a method of connecting pipe members for an endoscope.
2. Related Art
Generally, pipe members used for endoscopes are made of corrosion-resistant alloy materials, and pipe members are connected by welding or silver-alloy brazing and the like to have a watertight structure. In recent years, laser beam irradiation so-called laser welding has been used in view of easiness of operation and steadiness of welding. An example of such a configuration is disclosed in Japanese Patent Provisional Publication No. HEI 4-25007.
When laser welding is performed, a connection area irradiated with a laser beam tends to be unnecessarily oxidized due to increase of temperature. In such a case, the connection strength may be largely lowered.
The above oxidation phenomenon occurs also in a passage in pipe members as connected. In particular, the oxidation phenomenon notably occurs when the thickness of the wall of the pipe members is thin. Once the pipe passage is oxidized, such oxidized portions may be peeled off when liquids and/or gases are passed through the pipe passage during endoscopic diagnosis and left inside the human body. Further, filthy liquids and the like from human body may be stuck in the oxidized area and accumulated. Then, oxidation of the pipe members may be progressed due to existence of such filthy materials.
The present invention is advantageous in that there is provided an improved method of connecting pipe members for an endoscope. According to the method, oxidization of the pipe passage inside the two pipe members, which are connected by laser welding, can be prevented and therefore occurrence of the above-described problems can be prevented in advance.
According to aspects of the invention, there is provided a method for connecting pipe members for an endoscope. The method includes the steps of arranging two pipe members each made of a corrosion-resistant alloy material by fitting one in another so that a passage is defined through the two pipe members, jetting inert gas toward an exterior of an area at which the two pipe members are to be connected, injecting inert gas through the passage defined through the two pipe members, and connecting the two pipes by laser welding such that a laser beam is irradiated toward the exterior of the area at which the two pipe members are to be connected with jetting the inert gas toward the exterior of the area at which the two pipe members are to be connected and injecting the inert gas through the passage defined by through the two pipe members.
According to aspects of the present invention, pipe members are connected by the laser welding. During irradiation of the laser beam, an inert gas is jetted toward the connection area to which a laser beam is irradiated for laser welding from outside and inside. Therefore, the oxidation can be suppressed during the laser welding.
Hereinafter, referring to accompanying drawings, embodiments of the present invention will be described. An example of an endoscope having a pipe connection structure, to which the embodiments of the invention are applicable, is U.S. Pat. No. 5,840,015, teachings of which are incorporated herein by reference.
One end of the first pipe member 1 is fitted in a pipe insertion hole 2H formed on the second pipe member 2. Then a laser beam R is irradiated on the entire circumference of the exterior of the connected area, whereby the first pipe member 1 and the second pipe member 2 are welded (seam welding is done). In
According to the above method, a fitted length d, along the axis of the first pipe member 1, with respect to the insertion hole 2H formed on the second pipe member 2 is set in a range of 0.5 to 2 times the wall thickness t of the first pipe member 1. With this structure, the laser welding can be performed solidly without leaving a gap in the fitted area, after welding.
When the first pipe member 1 and the second pipe member 2 are irradiated with the laser beam R for welding, inert gas A1, such as Argon gas, is jetted from a first inert gas jet nozzle 11 toward the inner surfaces of the connected portion of the first and second pipe members 1 and 2, whereby oxidation of the surface of their laser-welded area 3 is prevented.
At the same time, inert gas A2, such as Argon gas, is jetted from a second inert gas jet nozzle 12, which is connected to the outer end of the first pipe member 1. The inert gas A2 passes through the pipe passage in the first and second pipe members 1 and 2, whereby oxidation of inner side of the laser welding area 3 in the pipe members 1 and 2 is prevented. As described above, according to the above method, occurrence of various problems can be prevented.
In the above method, the inert gas A2 is passed through the pipe passage defined by the first and second pipe members 1 and 2 at a normal temperature (approximately in the range of 0 to 40° C.), and the pressure of the inert gas A2 is approximately in a range of 0.05 to 0.5 MPa. Therefore, according to the above described method, an antioxidation effect can be achieved under practical operational conditions.
The first pipe member 1, the second pipe member 2, and the inert gas injection jig 4 are rotated around the axis of the inert gas injection jig 4 in an integrated manner, and consequently, the inert gas A2 brought through the through-holes 5 into the inert gas injection jig 4 passes through the pipe passage defined in the first and second pipe members 1 and 2. The first inert gas jet nozzle 11 is arranged in a manner similar to the second embodiment. The laser beam R is also irradiated in a manner similar to the second embodiment. According to the above method, the effects similar to those of the first and the second embodiments can be achieved.
The present invention is not to be limited to the embodiments described above, and further aspects or modifications may be adopted. For example, both of the two pipe members 1 and 2 may be not always thin-walled pipes. And, the inert gases A1 and A2 may also be any inert gases other than Argon gas.
The present disclosure relates to the subject matter contained in Japanese Patent Application No. 2008-012433, filed on Jan. 23, 2008, which is expressly incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-012433 | Jan 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4000392 | Banas et al. | Dec 1976 | A |
4533806 | Kawasaki et al. | Aug 1985 | A |
4684779 | Berlinger et al. | Aug 1987 | A |
4723064 | Bothe, II | Feb 1988 | A |
5001323 | Matsutani et al. | Mar 1991 | A |
5840015 | Ogino | Nov 1998 | A |
5864111 | Barefoot | Jan 1999 | A |
5977513 | Findlan | Nov 1999 | A |
20020017515 | Obata et al. | Feb 2002 | A1 |
20060155271 | Sugita et al. | Jul 2006 | A1 |
20060271066 | Kimura et al. | Nov 2006 | A1 |
20070043324 | Shibata et al. | Feb 2007 | A1 |
20070203487 | Sugita | Aug 2007 | A1 |
20070236782 | Sano | Oct 2007 | A1 |
20070282326 | Sugita | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
4-25007 | Apr 1992 | JP |
2003-33320 | Feb 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20090184095 A1 | Jul 2009 | US |