Method of constructing a fire-resistive wall assembly

Information

  • Patent Grant
  • 11920339
  • Patent Number
    11,920,339
  • Date Filed
    Wednesday, February 22, 2023
    a year ago
  • Date Issued
    Tuesday, March 5, 2024
    9 months ago
Abstract
A hanger for connecting a structural component to a wall that can have sheathing mounted thereon either before or after the hanger is connected to the wall. The hanger includes a channel-shaped portion configured to receive the structural component. An extension portion extends from the channel-shaped portion and is configured to extend through the sheathing to engage the wall at a first location. A connection portion is configured for attachment to the wall at a second location spaced from the first location.
Description
FIELD OF THE INVENTION

The present invention generally relates to connections for structures, and more specifically, a truss hanger for connecting a truss to a wall including fire retardant sheathing.


BACKGROUND

The use of fire separation walls in structures, such as in multifamily housing, is commonplace. Often, fire separation is required to be continuous along the walls between adjoining units to prevent fire from spreading between the adjoining units in a multifamily structure. For some types of construction, the building codes also require exterior walls to be fire rated. Typically, gypsum board is used as a fire retardant sheathing along these walls. Floor trusses or joists are attached to or hung from the walls including the gypsum board, but cannot be hung from the gypsum board itself. The trusses or joists must therefore be attached to the wall framing. A cutout for the entire cross section of the truss leaves a large discontinuity in the fire retardant sheathing. However, building codes require that the fire separation wall maintain a certain fire resistant rating. Thus, the integrity of the fire retardant sheathing should be maintained and interruptions of the sheathing kept to a minimum.


SUMMARY

In one aspect of the present invention, a hanger for connecting a structural component to a wall having sheathing mounted thereon includes a channel-shaped portion configured to receive the structural component. The channel shaped portion includes a bottom wall, side walls extending from opposite edges of the bottom wall and a back wall. The bottom wall, side walls and back wall are sized and arranged to receive an end of the structural component for supporting the end of the structural component. A connection portion includes a top flange extending away from the back wall of the channel-shaped portion in a direction opposite to the bottom wall of the channel-shaped portion. The top flange is configured for attachment to a top surface of a top plate of the wall. The connection portion further includes a back flange extending from an edge of the top flange in a direction toward the bottom wall of the channel-shaped portion. The back flange of the connection portion faces the back wall of the channel-shaped portion and the back flange and back wall define a space sized to receive the sheathing between the back flange and the back wall. An extension portion extends from the channel-shaped portion to the connection portion and interconnects the channel-shaped portion and the connection portion. The extension portion separates the back wall of the channel-shaped portion from the back flange of the connection portion to define the space sized to receive the sheathing.


In another aspect pf the present invention a hanger for connecting a structural component to a wall adapted to have sheathing mounted thereon generally comprises a channel-shaped portion configured to receive the structural component. An extension portion extends from the channel-shaped portion and is configured to extend through the sheathing to engage the wall at a first location. The extension portion includes extension flanges extending from the channel-shaped portion forming a bend between each extension flange and the channel-shaped portion. Each of the extension flanges is configured to extend through the sheathing. A connection portion is fixed in position relative to the channel-shaped portion such that that channel-shaped portion does not rotate relative to the connection portion. The connection portion is configured for attachment to the wall at a second location spaced from the first location. The extension flanges define planar surfaces disposed in opposed face-to-face relation between the connection portion and the channel-shaped portion.


In another aspect of the present invention, a truss hanger for connecting a truss to a wall adapted to have fire resistant sheathing mounted thereon generally comprises a channel-shaped portion configured to receive the truss. The channel-shaped portion includes a base sized and shaped for receiving a truss chord of the truss thereon, side panels extending upward from the base, and a back panel. The back panel extends orthogonally from one of the side panels. An extension portion extends from the channel-shaped portion and is configured to extend through the fire resistant sheathing. The extension portion includes extension flanges. Each of the extension flanges extends away from the base of the channel-shaped portion. A connection portion includes a top flange extending away from the back panel of the channel-shaped portion in a direction opposite to the base of the channel-shaped portion. The top flange is configured for attachment to a top surface of a top plate of the wall. The connection portion further includes a back flange extending from an edge of the top flange in a direction toward the base of the channel-shaped portion.


A hanger for connecting a structural component to a wall having sheathing mounted thereon generally comprises a channel-shaped portion configured to receive the structural component. An extension portion is configured to be disposed at least partially in the sheathing. A connection portion is configured for attachment to the wall.


Other objects and features will be in part apparent and in part pointed out hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary perspective of adjacent floor trusses connected to a wall having fire retardant sheathing by truss hangers that extend through the sheathing;



FIG. 2 is a perspective of a truss hanger according to a first embodiment of the present invention;



FIG. 2A is a rear perspective of the truss hanger;



FIG. 3 is a front elevation thereof;



FIG. 4 is a right side elevation thereof;



FIG. 5 is a left side elevation thereof;



FIG. 6 is a rear elevation thereof;



FIG. 7 is a top plan thereof;



FIG. 8 is a bottom plan thereof;



FIG. 9 is a perspective of a wall having fire retardant sheathing with a slot cut in the sheathing to receive the truss hanger;



FIG. 10 is the perspective of FIG. 9, but showing two of the truss hangers mounted thereon;



FIG. 10A is an enlarged fragmentary perspective of FIG. 10;



FIG. 11 is a top plan of FIG. 10, illustrating the truss hanger extending through the fire retardant sheathing;



FIG. 12 is a perspective similar to FIG. 10, but showing a floor truss positioned for mounting in the truss hanger;



FIG. 13 is a side elevation of FIG. 12;



FIG. 13A is an enlarged fragmentary perspective of FIG. 13 with a portion of the fire retardant sheathing broken away;



FIG. 14 is the perspective of FIG. 10, but showing floor trusses mounted in the truss hangers;



FIG. 14A is an enlarged fragmentary perspective of FIG. 14;



FIG. 15 is a top view of a stamped metal blank for forming a truss hanger according to the present invention;



FIG. 16 is a perspective of a slot template for use in cutting the slot in the sheathing to receive the truss hanger;



FIG. 17 is a rear perspective of the slot template;



FIG. 18 is a front elevation thereof;



FIG. 19 is a right side elevation thereof;



FIG. 20 is a left side elevation thereof;



FIG. 21 is a rear elevation thereof;



FIG. 22 is a top plan thereof;



FIG. 23 is a bottom plan thereof;



FIG. 24 is a front view of a stamped metal blank for forming the slot template;



FIG. 25 is a fragmentary perspective of adjacent floor trusses connected at an angle to a wall having fire retardant sheathing by truss hangers of a second embodiment that extend through the sheathing;



FIG. 26 is a perspective of one of the truss hangers of FIG. 25;



FIG. 27 is a rear perspective thereof;



FIG. 28 is a front elevation thereof;



FIG. 29 is a right side elevation thereof;



FIG. 30 is a left side elevation thereof;



FIG. 31 is a rear elevation thereof;



FIG. 32 is a top plan thereof;



FIG. 33 is a bottom plan thereof;



FIG. 34 is a perspective of a wall and the two truss hangers mounted thereon with parts broken away;



FIG. 35 is an enlarged fragmentary perspective of FIG. 34;



FIG. 36 is a top plan of FIG. 34, illustrating the truss hangers extending through the fire retardant sheathing;



FIG. 37 is a side elevation of FIG. 34;



FIG. 38 is an enlarged fragment of FIG. 37;



FIG. 39 is a top plan similar to FIG. 36, but showing a floor truss mounted in each truss hanger; and



FIG. 40 is a front view of a stamped metal blank for forming a truss hanger according to the present invention.





Corresponding reference characters indicate corresponding parts throughout the drawings.


DETAILED DESCRIPTION

Referring to FIG. 1, a first embodiment of a connection system for a fire separation wall is shown generally at 10. Floor trusses generally indicated at 12 each include truss members (broadly, “wooden structural members”) including a top chord 14, a bottom chord 16, and web members 18 joining the top and bottom chords. Each floor truss also includes end members 20 at each end joining the top and bottom chords 14, 16 (only one end of each truss is shown). The truss members can be joined by nail plates 22 or by any other suitable fastening structure. The number and orientations of the web members 18 and chords 14, 16 may vary from the illustrated embodiment without departing from the scope of the invention, as a truss hanger 26 according to the present invention is readily applicable to other truss configurations (e.g. a roof truss). Moreover, the hanger 26 may be used to connect structural components other than trusses to a wall or other part of a structure. The hanger can be used to support other wood framing members such as solid sawn or structural composite lumber.


As seen in FIG. 1, a wall 28 includes a top member or plate 30 and support members or studs 32 (only one stud may be seen in FIG. 1). As illustrated, the top plate 30 is formed by two 2×4's in stacked relation. Fire retardant sheathing 34 is mounted on both sides of the wall 28, as illustrated. In one embodiment, the fire retardant sheathing is gypsum board, such as two layers of ⅝″ gypsum board mounted on each side of the wall 28 as illustrated, although other configurations of fire retardant sheathing are within the scope of the present invention. Other wall configurations, including different wall constructions and materials, are within the scope of the present invention. For example, the truss hangers 26 can be used with any wall assembly or fire-rated wall assembly, such as a 2-hour fire-resistive wall assembly. The floor trusses 12 are mounted on the wall 28 adjacent the fire retardant sheathing 34 by the truss hangers 26. The truss hangers 26 extend through a narrow slot in the fire retardant sheathing 34 to maintain the integrity and fire retardant characteristics of the fire separation wall.


Referring to FIGS. 2-8, the truss hanger 26 includes a channel-shaped portion 38, an extension portion 40, and a connection portion 42. The channel-shaped portion 38 is configured to receive the floor truss 12. The channel-shaped portion 38 includes a seat or base 44 and a pair of side panels 46 extending upward from the base. When installed, the base 44 is generally horizontal, and the side panels 46 extend generally vertical from the base. A back panel 48 extends from each of the side panels 46. Each back panel 48 is generally perpendicular to both the side panels 46 and the base 44. When installed, each back panel 48 extends generally parallel to an interior face 50 of the fire retardant sheathing 34. The base 44, side panels 46, and back panels 48 form a channel 52 configured to receive the floor truss 12.


As seen in FIGS. 1 and 12-14A, the floor truss 12 is received in the channel 52 to attach the floor truss to the wall 28. The bottom chord 16 of the floor truss 12 engages and rests upon (i.e., is supported by) the base 44. The end member 20 of the floor truss 12 is positioned against the back panels 48 between the side panels 46. The truss hanger 26 includes fastening structure for attaching the floor truss 12 to the truss hanger. Fastening structure can be of any type known in the art for attaching a connector to a wooden structural member, such as nailing teeth (not shown) struck from the material of the hanger. In the illustrated embodiment, the fastening structure comprises a hole to allow for insertion of a fastening member. More specifically, in one embodiment the fastening structure comprises nail holes 54 in the side panels 46 of the truss hanger 26, and the fastening member comprises a nail 56 (see FIG. 12). In the illustrated embodiment, nail holes 54 are positioned on each of the side panels 46 so that nails 56 can be inserted into both the bottom chord 16 and the end member 20 of the floor truss 12 to attach the hanger 26 to the floor truss 12.


Referring again to FIGS. 2-8, the extension portion 40 includes two extension flanges 60 configured to extend through the fire retardant sheathing 34. Each flange 60 extends from one of the back panels 48. The flanges 60 are positioned in opposed, face-to-face relation, and preferably engage each other along a juncture. Each flange 60 extends generally perpendicular from the corresponding back panel 48 and generally parallel to the side panels 46. At a bottom edge, each flange 60 includes a driving point 62. Each of the driving points 62 is generally triangular and includes a pointed tip 64. As seen in FIGS. 3 and 6, the tips 64 of the driving points 62 are vertically offset from each other. As illustrated, the tip 64a of one flange 60a extends vertically below the tip 64b of the other flange 60b. In one embodiment, the tips 64 are vertically offset from each other about ⅛″, although other configurations are within the scope of the present invention, such as tips that are aligned or tips that are offset a smaller or larger amount.


A back flange 66 extends from each of the extension flanges 60. Each back flange 66 extends generally perpendicular from the extension flange 60 and is oriented generally parallel to the back panels 48. Referring to FIG. 13A, the back flanges 66 engage the wall 28 at a first location L1, which in the illustrated embodiment is a vertical face of the top plate 30 of the wall. The back panels 48, extension flanges 60, and back flanges 66 form a pair of sheathing channels 68. Each sheathing channel 68 is configured to receive a portion of the fire retardant sheathing 34 to secure the sheathing between the hanger 26 and the wall 28. As seen in FIG. 7, the sheathing channels 68 extend generally perpendicular to the truss-receiving channel 52.


As seen in FIGS. 10A and 11, the extension flanges 60 extend through a slot 72 in the fire retardant sheathing 34. Preferably, the slot has an area less than or equal to 6 square inches, and the gap between the extension flanges 60 and the edge of the slot 72 is less than or equal to ⅛″. The driving points 62 extend down into the sheathing 34 to further secure the sheathing between the hanger 26 and the wall 28. A portion of the fire retardant sheathing 34 extends into each sheathing channel 68 and is secured between the back panels 48 and the back flanges 66.


In one embodiment, the slot 72 in the fire retardant sheathing 34 can be made using a slot template 82 (FIGS. 16-24). The slot template 82 includes a vertical panel 84 having a rear face 86 configured to engage the interior face 50 of the fire retardant sheathing 34 and a horizontal panel 88 having a bottom face 90 configured to engage a top face of the sheathing. The horizontal panel 88 extends generally perpendicular from the vertical panel 84. The slot template 82 is configured to be quickly fixed in position on the sheathing 34 for use in cutting the slot 72 to receive the truss hanger 26. Portions of the slot template 82 are configured to be pressed into the sheathing 34 to locate the template on the sheathing and retain the template in position for cutting the slot 72. In the illustrated embodiment, the horizontal panel includes prongs 92 that are bent downward for insertion into the top face of the sheathing 34. Bottom corners 94 of the vertical panel 84 are bent rearward for insertion into the interior face 50 of the sheathing 34. The prongs 92 and the corners 94 are inserted into the sheathing 34 to retain the template 82 in position for cutting the slot 72. In addition, the vertical panel 84 optionally includes dimples 96 extending toward the rear face 86 of the vertical panel 84. The dimples 96 ensure the vertical panel 84 remains slightly spaced from the interior face 50 of the sheathing 34 so the template 82 can be easily removed from the sheathing after the slot 72 is cut.


The template 82 includes a guide slot 98 to guide a cutting tool in cutting the slot 72 in the sheathing 34. The guide slot 98 extends from a top edge of the vertical panel 84 to a location spaced from a bottom edge of the vertical panel. As illustrated, the guide slot 98 includes a wide, rectangular portion 98a in the horizontal panel 88 to ease insertion of a cutting tool into the guide slot. A converging portion 98b of the slot 98 in the vertical panel 84 transitions from the wide portion 98a to a narrow lower portion 98c of the slot. This facilitates entry of the cutting tool into the narrow portion 98c. The narrow portion 98c of the guide slot 98 is dimensioned to facilitate cutting the slot 72 in the sheathing 34 to a size configured to receive the extension flanges 60 of the truss hanger 26.


As seen in FIG. 24, the template 82 described above can be formed as one piece from a metal blank 100 that is stamped from a sheet metal roll and bent into shape. In one embodiment, the template 82 is stamped from 16 gauge steel, although other thicknesses (e.g., 12-18 gauge) and other suitable materials are within the scope of the present invention.


In use, the template 82 is placed on the sheathing 34 in a selected location for a slot 72. The template can be used to cut the slot 72 in the sheathing 34 either before or after the sheathing is mounted on the wall 28. The prongs 92 and corners 94 are inserted into the sheathing 34 by tapping with a hand or striking with a hammer or other blunt instrument. Once the template 82 is secured in position on the sheathing 34, a cutting tool (e.g., a drywall cutout tool) is inserted into the guide slot 98 to cut a slot 72 in the sheathing at the location of the guide slot. In one embodiment, a drywall cutout tool with a ⅛″ or ¼″ spiral bit is used to cut the slot 72, although other cutting tools are within the scope of the present invention. After the slot 72 is cut in the sheathing 34, the template 82 is removed from the sheathing. The sheathing 34 is then configured to receive the truss hanger 26.


Referring again to FIGS. 2-8, the connection portion of the hanger includes a pair of connector tabs 74 extending from the back flanges 66. Each connector tab 74 extends generally perpendicular from one of the back flanges 66. The connector tabs 74 are generally horizontal when the hanger 26 is installed. The connector tabs 74 are configured to engage an upper surface of the top plate 30 of the wall 28 at a second location L2 spaced from the first location L1. The connector tabs 74 can be used to attach the truss hanger 26 to the wall, thereby hanging the floor trusses 12 from the wall. As seen in FIG. 1, the connector tabs 74 extend over a portion of the top plate 30 of the wall 28. Each connector tab 74 includes fastening structure, such as nail holes 76, for insertion of a fastening member, such as nails 78 (see FIGS. 10 and 10A), to attach the hanger 26 to the wall 28. In the illustrated embodiment, each connector tab 74 includes three nail holes 76. Other configurations are within the scope of the present invention, such as a different number of nail holes, or alternate fastening structure such as nailing teeth or other appropriate structure for fastening the hanger to the wall.


The base 44 and back flanges 66 of the truss hanger 26 cooperate to stabilize the truss hanger 26 and protect the fire retardant sheathing 34 under the loads transferred from the truss 12 to the wall 28 by way of the hanger. The channel 52 that receives an end portion of the truss 12 is spaced to the interior of the wall 28 and more particularly to the interior of the second location L2 where the connector tabs 74 are attached to an upper surface of the top plate 30. The vertically downward load of the truss 12 applied to the base 44 of the truss hanger 26 urges the truss hanger 26 to pivot so that the base would move toward the wall 28, which could damage the fire retardant sheathing 34 and pry out the nails 78 connecting the connector tabs 74 to the upper surface of the top plate 30. However, this motion is resisted by the engagement of the back flanges 66 with the interior vertical face of the top plate 30 at the first location L1. Thus, there is a force couple between the base 44 of the hanger 26 carrying the vertical load of the truss 12 and the back panels 48 of the hanger (via engagement of the back flanges 66 with the top plate 30) engaging the end face of the truss. Accordingly, the truss hanger 26 and truss 12 are stable with minimal disruption of the fire retardant sheathing 34, even though the truss is held at a distance from the wall 28 by the truss hanger.


As seen in FIG. 15, a truss hanger 26 as described above can be formed as one piece from a metal blank 80 that is stamped from a sheet metal roll and bent into shape. In one embodiment, the truss hanger 26 is stamped from 12-14 gauge steel, although other suitable materials are within the scope of the present invention. The configuration of the truss hanger 26 of the present invention allows a lighter gauge metal to be used.


In use, the truss hanger 26 is positioned in the slot 72 of the fire retardant sheathing 34 mounted on the wall 28. As seen in FIGS. 9-14A, one method of using the truss hanger 26 includes cutting the slot 72 in the fire retardant sheathing 34 (either before or after the sheathing is mounted on the wall). In one embodiment, the slot 72 can be cut using the slot template 82 (either before or after the sheathing 34 is mounted to the wall 28). The slot can be any suitable length, and in one embodiment is about 10 inches long. The truss hanger 26 is then positioned against the fire retardant sheathing 34 so that the extension flanges 60 extend through the slot 72. In one embodiment, the hanger 26 is slid downward into place so that the extension flanges 60 extend through the slot 72, the back flanges 66 are positioned adjacent the wall 28, and the fire retardant sheathing 34 is positioned in the sheathing channels 68 between the back flanges and the back panels 48. The hanger connector tabs 74 are fastened to the top plate 30 of the wall 28 by any suitable means, such as by inserting nail 78 through the nail holes 76. Then, a truss member, e.g. truss bottom chord 16, is positioned in the truss channel 52 of the hanger 26 (see FIG. 1), thereby securing the floor truss 12 to the wall 28. The truss hanger 26 is then fastened to the truss 12 by any suitable means, such as by inserting nails 56 through the nail holes 54 in each side panel 46 of the hanger. The hanger 26 is thus secured to both the truss 12 and the wall 28, with the fire retardant sheathing 34 secured between the hanger and the wall.


In another embodiment, the truss hangers 26 can be installed without pre-forming the slot 72 in the fire retardant sheathing 34. More particularly, each hanger 26 can be driven into the sheathing 34. The driving point 62 of the hanger 26 is positioned against a top edge of the fire retardant sheathing. The hanger 26 is then driven downward into the sheathing 34, led by the pointed tip 64. The hanger 26 continues to be driven into the gypsum boards until the connector tabs 74 engage the upper surface of the top plate 30. In this way, the hanger 26 forms the slot in the sheathing 34.


In still another embodiment, the truss hangers 26 can be installed on the wall 28 before the sheathing 34 is mounted on the wall. This simplifies construction by allowing the building to be completely framed and roofed before requiring the sheathing 34 to be installed. Trade workers (e.g., mechanical, electrical) therefore have complete access to the wall cavity to install components without interference from the sheathing 34. The truss hanger 26 is positioned against the wall 28 such that the back flanges 66 engage the wall and the connector tabs 74 engage the top plate 30. The connector tabs 74 are fastened to the top plate 30 of the wall by any suitable means, such as by inserting nails 78 through nail holes 76. Then, a truss 12 is positioned in the truss channel 52 of the hanger 26. The truss hanger is fastened to the truss 12 by any suitable means, such as by inserting nails 56 through the nail holes 54 in each side panel 46 of the hanger 26. The floor truss 12 is thereby secured to the hanger 26 and the wall 28, and access to the wall cavity remains unhindered by sheathing. Subsequently, the sheathing 34 can be mounted on the wall 28 by moving the sheathing upward into place so that the extension flanges 60 of the hanger 26 extend through the slot 72 of the sheathing and the sheathing is positioned in the sheathing channels 68 between the back flanges 66 and the back panels 48.


Referring to FIGS. 25-40, a second embodiment of a truss hanger 126 for use in mounting the floor truss 12 to the wall 28 is illustrated. The truss hanger 126 is similar to the truss hanger 26 described above, with differences as pointed out herein. Where the truss hanger 26 is configured for mounting the floor truss 12 generally orthogonal to the wall 28, the truss hanger 126 is configured for mounting the floor truss 12 in a skewed position relative to the wall.


Referring to FIGS. 26-33, the truss hanger 126 includes a channel-shaped portion 138, an extension portion 140, and a connection portion 142. The channel-shaped portion 138 is configured to receive the floor truss 12. The channel-shaped portion 138 is configured to support the floor truss 12 at a non-orthogonal angle relative to the wall 28. In this skewed embodiment, the channel-shaped portion 138 is offset from the extension portion 140. The channel-shaped portion 138 includes a seat or base 144 and a pair of side panels 146 extending upward from the base. When installed, the base 144 is generally horizontal, and the side panels 146 extend generally vertical from the base. A back panel 148 extends from one of the side panels 146a toward the opposing side panel 146b. The back panel 148 is generally perpendicular to both the side panels 146 and the base 144. When installed, the back panel 148 extends at a non-orthogonal angle (e.g., about 45°) to the interior face 50 of the fire retardant sheathing 34. The base 144, side panels 146, and back panel 148 form a channel 152 configured to receive the floor truss 12. Other configurations are within the scope of the present invention. For example, the truss hanger 126 can be configured to support the floor truss 12 at a range of different angles with respect to the wall 28.


As seen in FIGS. 25 and 39, the floor truss 12 is received in the channel 152 to attach the floor truss to the wall 28 at a skewed angle. The bottom chord 16 of the floor truss 12 engages and rests upon (i.e., is supported by) the base 144. The end member 20 of the floor truss 12 is positioned against the back panel 148 between the side panels 146. The truss hanger 126 includes fastening structure for attaching the floor truss 12 to the truss hanger. Fastening structure can be of any type known in the art for attaching a connector to a wooden structural member, such as nailing teeth (not shown) struck from the material of the hanger. In the illustrated embodiment, the fastening structure comprises a hole to allow for insertion of a fastening member. More specifically, in one embodiment the fastening structure comprises nail holes 154 in the side panels 146 of the truss hanger 126 (see, FIG. 26), and the fastening member comprises a nail 156 (see, FIG. 25). In the illustrated embodiment, nail holes 154 are positioned on each of the side panels 146 so that nails 156 can be inserted into both the bottom chord 16 and the end member 20 of the floor truss 12 to attach the hanger 126 to the floor truss.


Referring again to FIGS. 26-33, the extension portion 140 includes two extension flanges 160 configured to extend through the fire retardant sheathing 34. One of the flanges 160a extends from the back panel 148. The other flange 160b extends from the side panel 146b. The flanges 160 are positioned in opposed, face-to-face relation, and preferably engage each other along a juncture. At a bottom edge, each flange 160 includes a driving point 162. Each of the driving points 162 is generally triangular and includes a pointed tip 164. As seen in FIG. 28, the tips 164 of the driving points 162 are vertically offset from each other. As illustrated, the tip 164a of one flange 160a extends vertically below the tip 164b of the other flange 160b. In one embodiment, the tips 164 are vertically offset from each other about ⅛″, although other configurations are within the scope of the present invention, such as tips that are aligned or tips that are offset a smaller or larger amount.


A back flange 166 extends from the extension flange 160 generally perpendicular from the extension flange. Referring to FIG. 38, the back flange 166 engages the wall 28 at a first location L10, which in the illustrated embodiment is a vertical face of the top plate 30 of the wall behind the fire retardant sheathing 34. The back flange 166 comprises a back flange portion 166a bent from the extension flange 160a and a back flange portion 166b bent from the extension flange 160b. The back panel 148, side panel 146b, extension flanges 160, and back flange 166 form a pair of sheathing channels 168 (see, FIG. 32). Each sheathing channel 168 is configured to receive a portion of the fire retardant sheathing 34.


As seen in FIGS. 34-36, the extension flanges 160 extend through the slot 72 in the fire retardant sheathing 34. Preferably, the slot has an area less than or equal to 6 square inches, and the gap between the extension flanges 60 and the edge of the slot 72 is less than or equal to ⅛″. The driving points 162 extend down into the sheathing 34 to engage the sheathing and further secure the sheathing between the hanger 126 and the wall 28. A portion of the fire retardant sheathing 34 extends into each sheathing channel 168 and is secured against the back flange 166.


Referring again to FIGS. 26-33, the connection portion 142 of the hanger 126 includes a pair of connector tabs 174 extending from the back flange portions 166a, 166b. Each connector tab 174 extends generally perpendicular from a respective one of the back flanges 166a, 166b. The connector tabs 174 are generally horizontal when the hanger 126 is installed. The connector tabs 174 are configured to overlie and engage an upper surface of the top plate 30 of the wall 28 at a second location L20 spaced from the first location L10 (see, FIGS. 37 and 38). The connector tabs 174 can be used to attach the truss hanger 126 to the wall 28, thereby hanging the floor trusses 12 from the wall. As seen in FIG. 25, the connector tabs 174 extend over a portion of the top plate 30 of the wall 28. Each connector tab 174 includes fastening structure, such as nail holes 176, for insertion of a fastening member, such as nails 178 (see FIGS. 34 and 35), to attach the hanger 126 to the wall 28. In the illustrated embodiment, each connector tab 174 includes three nail holes 176. Other configurations are within the scope of the present invention, such as a different number of nail holes, or alternate fastening structure such as nailing teeth or other appropriate structure for fastening the hanger to the wall.


The base 144 and back flanges 166 cooperate to stabilize the truss hanger 126 and protect the fire retardant sheathing 34 from exposure to the loads transferred from the truss 12 to the wall 28 by way of the truss hanger 126. The channel 152 that receives an end portion of the truss 12 is spaced to the interior of the wall 28 and more particularly to the interior of the second location L20 where the connector tabs 174 are attached to an upper surface of the top plate 30 (see FIG. 38). The vertically downward load of the truss 126 applied to the base 144 of the truss hanger 126 urges the truss hanger to pivot so that the base would move toward the wall 28, which could damage the fire retardant sheathing 34 and pry out the nails 178 connecting the connector tabs 174 to the upper surface of the top plate 30. However, this motion is resisted by the engagement of the back flanges 166 with the interior vertical face of the top plate 30 at the first location L10. Thus, there is a force couple between the base 144 and back panel 148 of the hanger 126 (via engagement of the back flanges 166 with the top plate 30) engaging the end fact of the truss. Accordingly, the truss hanger 126 and truss 12 are stable with minimal disruption of the fire retardant sheathing 34, even though the truss is held at a distance from the wall 28.


As seen in FIG. 40, a truss hanger 126 as described above can be formed as one piece from a metal blank 180 that is stamped from a sheet metal roll and bent into shape. Parts of the blank 180 are labelled with reference numerals corresponding to the various parts of the formed truss hanger 126. In one embodiment, the truss hanger 126 is stamped from 12-14 gauge steel, although other suitable materials are within the scope of the present invention. The configuration of the truss hanger 126 of the present invention allows a lighter gauge metal to be used.


The truss hanger 126 is used as described above with reference to the truss hanger 26. In use, the truss hanger 126 is positioned in the slot 72 of the fire retardant sheathing 34 mounted to the wall 28. One method of using the truss hanger 126 includes cutting the slot 72 in the fire retardant sheathing 34 (either before or after the sheathing is mounted on the wall). In one embodiment, the slot 72 can be cut using the slot template 82 (either before or after the sheathing 34 is mounted to the wall 28). The slot 72 can be any suitable length, and in one embodiment is about 10 inches long. The truss hanger 126 is then positioned against the fire retardant sheathing 34 so that the extension flanges 160 extend through the slot 72. In one embodiment, the hanger 126 is slid downward into place so that the extension flanges 160 extend through the slot 72, the driving point 162 engages the fire retardant sheathing 34, the back flange 166 is positioned adjacent the wall 28, and the fire retardant sheathing is positioned in the sheathing channels 168 of the hanger. The hanger connector tabs 174 are fastened to the top plate 30 of the wall 28 by driving nails 178 through the nail holes 176 into the top plate 30. Then, a truss member, e.g. truss bottom chord 16 is positioned in the truss channel 152 of the hanger 126. Nails 156 are driven through holes 154 in the side panels 146 to secure the floor truss 12 to the wall 28. The hanger 126 is thus secured to both the truss 12 and the wall 28, with the fire retardant sheathing 34 between the hanger and the wall.


In another embodiment, the truss hangers 126 can be installed without pre-forming the slot 72 in the fire retardant sheathing 34. More particularly, each hanger 126 can be driven into the sheathing 34. The pointed tip 164 of the driving point 162 of the hanger 126 is positioned against a top edge of the fire retardant sheathing 34. The hanger 126 is then driven downward into the sheathing 34, led by the pointed tip 164. The hanger 126 continues to be driven into the gypsum boards until the connector tabs 174 engage the upper surface of the top plate 30. In this way, the hanger 126 forms the slot in the sheathing 34.


In another embodiment, the truss hangers 126 can be installed on the wall 28 before the sheathing 34 is mounted on the wall. This simplifies construction by allowing the building to be completely framed and roofed before requiring the sheathing 34 to be installed. Trade workers (e.g., mechanical, electrical) therefore have complete access to the wall cavity to install components without interference from the sheathing 34. The truss hanger 126 is positioned against the wall 28 such that the back flange 166 engages the wall and the connector tabs 174 engage the top plate 30. The connector tabs 174 are fastened to the top plate 30 of the wall by any suitable means, such as by inserting nails 178 through nail holes 176. Then, a truss 12 is positioned in the truss channel 152 of the hanger 126. The truss hanger 126 is fastened to the truss 12 by any suitable means, such as by inserting nails 156 through the nail holes 154 in each side panel 146 of the hanger. The floor truss 12 is thereby secured to the hanger 126 and the wall 28, and access to the wall cavity remains unhindered by sheathing. Subsequently, the sheathing 34 can be mounted on the wall 28 by moving the sheathing upward into place so that the extension flanges 160 of the hanger 126 extend through the slot 72 of the sheathing and the sheathing is positioned in the sheathing channels 168 of the hanger.


The truss hanger 26, 126 permits a floor truss 12 to be secured to a wall 28 through fire retardant sheathing 34 with minimal interruption to the sheathing. Installation of the truss hanger minimally disrupts the continuity of the sheathing and therefore does not reduce the fire resistive rating of a fire rated assembly. The extension flanges 60, 160 extend through the fire retardant sheathing 34 so that the sheathing is interrupted only by the slot 72 required to receive the flanges. The back flanges 66, 166 engage the wall 28 behind the sheathing 34 to stabilize the hanger 26, 126 and protect the sheathing. The truss hanger 26, 126 can be mounted on a wall already having sheathing mounted thereon, or can be mounted on a wall before the sheathing (i.e., the sheathing does not have to be mounted on the wall before the truss hanger), thereby simplifying construction. The truss hanger 26, 126 can be formed from a metal blank 80, 180, which reduces the number of parts required to hang the floor truss 12 and simplifies the manufacturing process.


In an independent test performed by an outside firm, the truss hanger was installed as part of a wall assembly including 2×6 wood studs, 24″ on center, with two layers of ⅝″ Type X gypsum attached to each side. The gypsum board included a slot to accommodate the hanger. The hanger was fixed to the top plate of the wall with six 10d common nails in the connector tabs. The cavities in the wall were filled with mineral wool insulation. The testing was performed per ASTM E814 which subjected the specimen to the time/temperature curve prescribed in ASTM E119 for a period of two hours, followed by a hose stream test. As a result of this testing, the outside firm reported that when installed on one side of a maximum 2 hour fire-rated wall assembly, the penetration of the truss hanger through the gypsum board will not reduce the fire resistive rating of the 2 hour fire resistive assembly.


Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.


When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.


As various changes could be made in the above products without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A method of constructing a fire-resistive wall assembly, the method comprising: mounting a fire wall hanger on a frame wall, the frame wall including a top plate and a plurality of studs extending down from the top plate, and the fire wall hanger including a channel-shaped portion sized and shaped to receive a structural component, a connection portion configured for attachment to the frame wall and an extension portion interconnecting the channel-shaped portion and the connection portion and spacing the channel-shaped portion from the connection portion, said step of mounting the fire wall hanger includes securing the connection portion of the fire wall hanger to the top plate of the frame wall so that the channel-shaped portion is spaced from the frame wall;cutting an opening into an exterior edge of fire retardant sheathing, the opening extending through a front face of the fire retardant sheathing and through a rear face of the fire retardant sheathing and opening outwardly from the exterior edge of the fire retardant sheathing; andafter mounting the fire wall hanger on the frame wall and after cutting the opening into the exterior edge of the fire retardant sheathing, installing the fire retardant sheathing with respect to the frame wall so the rear face of the fire retardant sheathing faces toward the studs of the frame wall, said step of installing the fire retardant sheathing includes: inserting the fire retardant sheathing between the channel-shaped portion of the fire wall hanger and the frame wall; andmoving the fire retardant sheathing relative to the fire wall hanger mounted on the frame wall so that an edge of the fire retardant sheathing bounding the opening moves alongside the extension portion and the fire wall hanger extends through the opening in the fire retardant sheathing.
  • 2. The method of claim 1, wherein said step of mounting the fire wall hanger includes engaging a front face of the frame wall with a back flange of the connection portion of the fire wall hanger.
  • 3. The method of claim 2, wherein the step of mounting the fire wall hanger further includes engaging an upper surface of the top plate with a top flange of the connection portion of the fire wall hanger.
  • 4. The method of claim 3, wherein said step of inserting the fire retardant sheathing between the channel-shaped portion of the fire wall hanger and the frame wall includes positioning the fire retardant sheathing over and in front of a front face of the back flange of the connection portion of the fire wall hanger.
  • 5. The method of claim 4, wherein said step of installing the fire retardant sheathing includes placing the rear face of the fire retardant sheathing against the front face of the frame wall.
  • 6. The method of claim 5, wherein said step of placing the rear face of the fire retardant sheathing against the front face of the frame wall includes engaging the rear face of the fire retardant sheathing with the top plate and the plurality of studs, the top plate and the plurality of studs forming the front face of the frame wall.
  • 7. The method of claim 3, wherein said step of securing the connection portion of the fire wall hanger to the top plate of the frame wall includes driving one or more nails through the top flange of the connection portion of the fire wall hanger into the upper surface of the top plate.
  • 8. The method of claim 1, further comprising positioning the structural component on an upper surface of a base of the channel-shaped portion of the fire wall hanger before said step of installing the fire retardant sheathing, said step of positioning the structural component including engaging the structural component with a stop of the fire wall hanger to space an end of the structural component from the frame wall to permit the fire retardant sheathing to be received between the end of the structural component and the frame wall, and wherein said step of inserting the fire retardant sheathing between the channel-shaped portion of the fire wall hanger and the frame wall includes inserting the fire retardant sheathing between the end of the structural component and the frame wall.
  • 9. The method of claim 1, wherein said step of cutting the opening into the exterior edge of the fire retardant sheathing includes cutting the opening to have an area less than an area of an end of the structural component facing toward the fame wall, the area of the opening being taken at and parallel to the front face of the fire retardant sheathing.
  • 10. The method of claim 9, wherein said step of cutting the opening into the exterior edge of the fire retardant sheathing includes cutting the opening to have a height less than a height of the channel-shaped portion of the fire wall hanger.
  • 11. The method of claim 10, wherein said step of cutting the opening into the exterior edge of the fire retardant sheathing includes cutting the opening to have a width less than a width of the channel-shaped portion of the fire wall hanger.
  • 12. The method of claim 1, wherein said step of cutting the opening into the exterior edge of the fire retardant sheathing includes placing a template on the fire retardant sheathing and cutting the opening using the template.
  • 13. The method of claim 1, wherein said step of installing the fire retardant sheathing includes positioning the fire retardant sheathing relative to the fire wall hanger so that the edge of the fire retardant sheathing bounding the opening is in close conformance with a first exterior face of the extension portion of the fire wall hanger.
  • 14. The method of claim 13, wherein the edge of the fire retardant sheathing bounding the opening is a first vertical edge, wherein said step of installing the fire retardant sheathing relative to the fire wall hanger further includes positioning the fire retardant sheathing so that a second exterior face of the extension portion is in close conformance with a second vertical edge of the fire retardant sheathing bounding the opening.
  • 15. The method of claim 1, wherein said step of moving the fire retardant sheathing relative to the fire wall hanger includes positioning the fire retardant sheathing so that a first extension flange of the extension portion of the fire wall hanger extends through the opening in the fire retardant sheathing.
  • 16. The method of claim 15, wherein said step of moving the fire retardant sheathing relative to the fire wall hanger includes positioning the fire retardant sheathing so that a second extension flange of the extension portion of the fire wall hanger extends through the fire retardant sheathing.
  • 17. The method of claim 16, wherein said step of positioning the fire retardant sheathing so that the second extension flange of the fire wall hanger extends through the fire retardant sheathing includes positioning the fire retardant sheathing so that the second extension flange of the extension portion of the fire wall hanger extends through the opening in the fire retardant sheathing.
  • 18. The method of claim 1, wherein said step of moving the fire retardant sheathing relative to the fire wall hanger includes positioning the fire retardant sheathing relative to the extension portion of the fire wall hanger so that only the extension portion of the fire wall hanger extends through the fire retardant sheathing.
  • 19. The method of claim 1, wherein said step of moving the fire retardant sheathing relative to the fire wall hanger includes positioning the fire retardant sheathing relative to the extension portion of the fire wall hanger so that only first and second extension flanges of the extension portion of the fire wall hanger extend through the fire retardant sheathing.
  • 20. The method of claim 1, wherein said step of moving the fire retardant sheathing relative to the fire wall hanger includes positioning the fire retardant sheathing relative to the extension portion of the fire wall hanger so that only first and second planar extension plates of the extension portion of the fire wall hanger extend through the opening in the fire retardant sheathing.
  • 21. The method of claim 20, wherein only the first and second planar extension plates of the extension portion of the fire wall hanger are disposed in the opening in the fire retardant sheathing.
  • 22. The method of claim 20, wherein the first and second planar extension plates lie in parallel vertical planes.
  • 23. The method of claim 22, wherein the first and second planar extension plates each include opposite first and second ends, the first end of the first planar extension plate being connected to the channel-shaped portion by a first bend, the second end of the first planar extension plate being connected to the connection portion by a second bend, the first end of the second planar extension plate being connected to the channel-shaped portion by a third bend, and the second end of the second planar extension plate being connected to the connection portion by a fourth bend.
  • 24. The method of claim 1, wherein said step of installing the fire retardant sheathing comprises positioning first and second Type X gypsum panels of the fire retardant sheathing, the first and second Type X gypsum panels each being 5/8-inch-thick, the first Type X gypsum panel having a front face and an opposite rear face, the second Type X gypsum panel having a front face and an opposite rear face, the rear face of the first Type X gypsum panel forming the rear face of the fire retardant sheathing and the front face of the second Type X gypsum panel forming a front face of the fire retardant sheathing, the rear face of the second Type X panel being in contact with the front face of the first Type X gypsum panel.
  • 25. The method of claim 1, wherein the connection portion and the channel-shaped portion are rigidly fixed with respect to one another, wherein the connection portion includes a back flange and a top flange, the back flange extending from an edge of the top flange, the back flange having a planar front surface, wherein the extension portion includes first and second planar extension plates extending from the channel-shaped portion to the connection portion, the first and second planar extension plates being parallel to one another, and wherein the channel-shaped portion of the fire wall hanger includes a base configured to receive an end portion of the structural component thereon to support the structural component, the channel-shaped portion of the fire wall hanger including a side panel extending upward from the base of the channel-shaped portion, the side panel being spaced apart from the planar front surface of the back flange of the connection portion along an axis that is normal to the planar front surface of the back flange of the connection portion, the axis intersecting the side panel of the channel-shaped portion and the planar front surface of the back flange of the connection portion; and wherein said step of mounting the fire wall hanger includes engaging a front face of the top plate with the back flange of the connection portion of the fire wall hanger and includes engaging an upper surface of the top plate with the top flange of the connection portion of the fire wall hanger.
  • 26. The method of claim 1, wherein the connection portion and the channel-shaped portion are rigidly fixed with respect to one another, wherein the extension portion of the fire wall hanger includes first and second planar extension plates, the first and second planar extension plates being parallel to one another, each of the first and second planar extension plates including an inner face and an outer face, the inner faces of the first and second planar extension plates facing one another, the inner face of the first planar extension plate facing in a first direction toward the inner face of the second planar extension plate and the outer face of the first planar extension plate facing in a second direction that is opposite the first direction, the inner face of the first planar extension plate lying in an inner face plane, and wherein the connection portion includes a back flange and a top flange, the top flange extending from an edge of the back flange, the back flange extending from an edge of the first planar extension plate in the second direction, the back flange and the top flange being entirely disposed outward, in the second direction, of the inner face plane; wherein said step of mounting the fire wall hanger includes engaging a front face of the top plate with the back flange of the connection portion of the fire wall hanger and includes engaging an upper surface of the top plate with the top flange of the connection portion of the fire wall hanger; andwherein said step of moving the fire retardant sheathing relative to the fire wall hanger includes positioning the fire retardant sheathing relative to the extension portion of the fire wall hanger so that only the first and second planar extension plates of the extension portion of the fire wall hanger extend through the opening in the fire retardant sheathing.
  • 27. A method of constructing a fire-resistive wall assembly, the method comprising: mounting a fire wall hanger on a frame wall, the frame wall including a top plate and a plurality of studs extending down from the top plate, and the fire wall hanger including a channel-shaped portion sized and shaped to receive a structural component, a connection portion configured for attachment to the frame wall and an extension portion interconnecting the channel-shaped portion and the connection portion and spacing the channel-shaped portion from the connection portion, said step of mounting the fire wall hanger includes securing the connection portion of the fire wall hanger to the top plate of the frame wall so that the channel-shaped portion is spaced from the frame wall;cutting an opening into an edge of fire retardant sheathing, the opening extending through a front face of the fire retardant sheathing and through a rear face of the fire retardant sheathing and having an open top opening outwardly from the edge of the fire retardant sheathing; andafter mounting the fire wall hanger on the frame wall and after cutting the opening into the edge of the fire retardant sheathing, installing the fire retardant sheathing with respect to the frame wall so the rear face of the fire retardant sheathing faces toward the studs of the frame wall, said step of installing the fire retardant sheathing includes: inserting the fire retardant sheathing between the channel-shaped portion of the fire wall hanger and the frame wall; andarranging the fire retardant sheathing relative to the fire wall hanger so that the fire wall hanger extends through the opening in the fire retardant sheathing and part of the extension portion of the fire wall hanger is received in the opening in the fire retardant sheathing.
  • 28. The method of claim 27, wherein said step of arranging the fire retardant sheathing relative to the fire wall hanger includes moving the fire retardant sheathing relative to the fire wall hanger so that said part of the extension portion moves into the opening in the fire retardant sheathing via the open top of the opening in the fire retardant sheathing.
  • 29. The method of claim 28, wherein said step of mounting the fire wall hanger includes: engaging a front face of the frame wall with a back flange of the connection portion of the fire wall hanger; andengaging an upper surface of the top plate with a top flange of the connection portion of the fire wall hanger.
  • 30. The method of claim 29, wherein said step of inserting the fire retardant sheathing between the channel-shaped portion of the fire wall hanger and the frame wall includes positioning the fire retardant sheathing against a front face of the back flange of the connection portion of the fire wall hanger, and wherein said step of installing the fire retardant sheathing includes placing the rear face of the fire retardant sheathing against the front face of the frame wall.
  • 31. The method of claim 30, wherein said step of arranging the fire retardant sheathing relative to the fire wall hanger includes positioning the fire retardant sheathing so that a first extension flange of the extension portion of the fire wall hanger extends through the opening in the fire retardant sheathing and a second extension flange of the extension portion of the fire wall hanger extends through the fire retardant sheathing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/235,349, filed Apr. 20, 2021, which is a continuation of U.S. application Ser. No. 16/433,799 filed Jun. 6, 2019, issued as U.S. Pat. No. 11,021,867 on Jun. 21, 2021, U.S. application Ser. No. 16/225,517 filed on Dec. 19, 2018, issued as U.S. Pat. No. 10,316,510 on Jun. 11, 2019, which is a continuation of U.S. application Ser. No. 15/675,409, filed Aug. 11, 2017, issued as U.S. Pat. No. 10,184,242 on Jan. 22, 2019, which is a continuation of U.S. application Ser. No. 14/555,049, filed Nov. 26, 2014, issued as U.S. Pat. No. 10,024,049 on Jul. 17, 2018, which claims priority to U.S. Provisional Application No. 61/922,531, filed Dec. 31, 2013, the entirety of which are incorporated herein by reference.

US Referenced Citations (113)
Number Name Date Kind
414169 Reuschel Oct 1889 A
478163 Ehman Jul 1892 A
537504 Van Dorn Apr 1895 A
546147 Gregg Sep 1895 A
598135 Butz Feb 1898 A
625427 Stewart et al. May 1899 A
666918 Butz Jan 1901 A
717316 Avery Dec 1902 A
753053 Eberhardt Feb 1904 A
770050 Dreyer Sep 1904 A
783807 Tuteur Feb 1905 A
796433 Kahn Aug 1905 A
804451 Carlson Nov 1905 A
828488 Lanz Aug 1906 A
874514 Lindow Dec 1907 A
922215 Tuteur May 1909 A
924842 Seipp Jun 1909 A
943847 Seipp Dec 1909 A
1406723 Caldwell Feb 1922 A
1728981 Ropp Sep 1929 A
1792815 Chapin Feb 1931 A
3088558 Dickinson May 1963 A
3125785 Conville Mar 1964 A
3298651 Passer Jan 1967 A
3601428 Gilb Aug 1971 A
3633950 Gilb Jan 1972 A
3752512 Gilb Aug 1973 A
3907445 Wendt Sep 1975 A
3945741 Wendt Mar 1976 A
3972169 Sheppard, Jr. Aug 1976 A
4005942 Gilb Feb 1977 A
4198175 Knepp et al. Apr 1980 A
4223866 Black Sep 1980 A
4230416 Gilb Oct 1980 A
4261155 Gilb Apr 1981 A
4353664 Gilb Oct 1982 A
4411548 Tschan Oct 1983 A
4422792 Gilb Dec 1983 A
4423977 Gilb Jan 1984 A
4472916 Krebs Sep 1984 A
4480941 Gilb et al. Nov 1984 A
4560301 Gilb Dec 1985 A
4584813 Hudson Apr 1986 A
4594017 Hills Jun 1986 A
4665672 Commins et al. May 1987 A
4709527 Cooley Dec 1987 A
4717279 Commins Jan 1988 A
4827684 Allan May 1989 A
4893961 O'Sullivan et al. Jan 1990 A
4920725 Gore May 1990 A
5004369 Young Apr 1991 A
5104252 Colonias et al. Apr 1992 A
5111632 Turner May 1992 A
5160211 Gilb Nov 1992 A
5230198 Callies Jan 1993 A
5217317 Young Jun 1993 A
5220766 Hills, Sr. Jun 1993 A
5249404 Leek et al. Oct 1993 A
5341619 Dunagan et al. Aug 1994 A
5423156 Nellessen, Jr. Jun 1995 A
5457928 Sahnazarian Oct 1995 A
5555694 Commins Sep 1996 A
5564248 Callies Oct 1996 A
5603580 Leek et al. Feb 1997 A
5697725 Ballash et al. Dec 1997 A
5797694 Breivik Aug 1998 A
5836131 Viola et al. Nov 1998 A
5896721 Sugiyama Apr 1999 A
6131358 Wise Oct 2000 A
6230466 Pryor May 2001 B1
6272951 Lambson Aug 2001 B1
6463711 Callies Oct 2002 B1
6877291 Shamroukh et al. Apr 2005 B2
7316098 Sackett Jan 2008 B1
7707785 Lin May 2010 B2
7971410 Jerke Jul 2011 B2
8387333 Brekke Mar 2013 B2
8677718 Marshall Mar 2014 B2
8720155 Robell May 2014 B1
9206594 Grevious et al. Dec 2015 B1
9228338 Lin Jan 2016 B2
9290926 Sidhu Mar 2016 B2
9394680 Bundy et al. Jul 2016 B2
10214897 Tan Feb 2019 B2
20010054270 Rice Dec 2001 A1
20020078656 Leek et al. Jun 2002 A1
20040096269 Shahnazarian May 2004 A1
20040129845 Whale et al. Jul 2004 A1
20050120669 Harrison Jun 2005 A1
20050155307 Timony Jul 2005 A1
20060081743 Evans et al. Apr 2006 A1
20060156682 McAndrew et al. Jul 2006 A1
20060191233 Tamlyn Aug 2006 A1
20070011959 DeBene Jan 2007 A1
20070119108 Downard May 2007 A1
20070294979 Lin et al. Dec 2007 A1
20080101855 Lin May 2008 A1
20080237421 Szpotowski Oct 2008 A1
20090056268 Greenlee et al. Mar 2009 A1
20090113839 Carr May 2009 A1
20100031601 Lin Feb 2010 A1
20110146173 Visser Jun 2011 A1
20120222382 Brekke Sep 2012 A1
20120297724 Pope et al. Nov 2012 A1
20130067850 Sasanecki Mar 2013 A1
20130232758 Pond Sep 2013 A1
20140338282 Sidhu Nov 2014 A1
20150059259 Hatzinikolas Mar 2015 A1
20150167291 Bundy et al. Jun 2015 A1
20150184370 Brekke et al. Jul 2015 A1
20150218832 Peters et al. Aug 2015 A1
20170321418 Tremblay Nov 2017 A1
20230193619 Brekke Jun 2023 A1
Foreign Referenced Citations (15)
Number Date Country
0210744 Feb 1991 EP
2062058 May 1981 GB
2433522 Jun 2007 GB
2451853 Feb 2009 GB
56802 Dec 1991 IE
H3-14482 Mar 1991 JP
H0314482 Mar 1991 JP
05171718 Jul 1993 JP
H70229225 Aug 1995 JP
D1213894 Jun 2004 JP
0106068 Jan 2001 WO
008035098 Mar 2008 WO
2012060863 May 2012 WO
2013126987 Sep 2013 WO
2017069993 Apr 2017 WO
Non-Patent Literature Citations (189)
Entry
Complaint for Patent Infringement, Case No. 3:19-cv-04683, filed Aug. 12, 2019, pp. 6.
Plaintiffs' Notice of Motion and Motion for Preliminary Injunction; Memorandum of Points and Authorities in Support of Motion, Case No. 3:19-cv-04683, filed Aug. 12, 2019, pp. 20.
Installer's Pocket Guide, Simpson Strong-Tie Company, Inc. (2009), pp. 60.
Top-Flange Joist Hangers Installed on Walls Over Wood Structural Panel Sheathing or Drywall, Technical Bulletin, Simpson Strong-Tie Company, Inc. (2013), pp. 2.
S/LBV / S/B and S/BA Hangers, Simpson Strong-Tie Company, Inc. (2010), pp. 1.
Cold-Formed Steel Connectors for Residential and Mid-Rise Construction (C-CFS10), Simpson Strong-Tie Company, Inc. (2010) pp. 76.
Wood Construction Connectors Catalog 2013-2014 (C-2013), Simpson Strong-Tie Company, Inc. pp. 236.
Declaration of Dr. Reynaud Serrette, filed as Exhibit 2001 in Case No. PGR2019-00063 on Dec. 13, 2019, 124 pages.
Curriculum Vitae of Reynaud L. Serrette, Ph.D., filed as Exhibit 2002 in Case No. PGR2019-00063 on Dec. 13, 2019, 15 pages.
American Institute of Timber Construction, Timber Construction Manual, Fourth Edition, 1994, filed as Exhibit 2015 in Case No. PGR2019-00063 on Dec. 13, 2019, 17 pages.
International Code Council, International Building Code, 2012, filed as Exhibit 2016 in Case No. PGR2019-00063 on Dec. 13, 2019, 57 pages.
International Code Council, International Building Code, 2000, filed as Exhibit 2017 in Case No. PGR2019-00063 on Dec. 13, 2019, 60 pages.
MiTek, Fire Wall Hangers FWH Series, Structural Connectors Specification Sheet, 2019, tiled as Exhibit 2018 in Case No. PGR2019-00063 on Dec. 13, 2019, 2 pages.
Simpson Strong-Tie, DU/DHU/DHUTF Drywall Hangers Specification Sheet, filed as Exhibit 2019 in Case No. PGR2019-00063 on Dec. 13, 2019, 7 pages.
ICC-ES Evaluation Report, Mar. 2019, filed as Exhibit 2021 in Case No. PGR2019-00063 on Dec. 13, 2019, 18 pages.
Definition of From, The New Oxford American Dictionary, Second Edition, 2005, filed as Exhibit 2022 in Case No. PGR2019-00063 on Dec. 13, 2019, 4 pages.
Gypsum Association, Gypsum Panel Products Types, Uses, Sizes, and Standards, 2004, filed as Exhibit 2023 in Case No. PGR2019-00063 on Dec. 13, 2019, 2 pages.
PABCO Gypsum, for Those About to Rock PABCO Gypsum Products, filed as Exhibiti 2024 in Case No. PGR2019-00063 on Dec. 13, 2019, 8 pages.
Beall, C., “Fire Ratings of Masonry Walls,” 1989, filed as Exhibit 2025 in Case No. PGR2019-00063 on Dec. 13, 2019, 3 pages.
Bilow, D. N., et al., “Fire and Concrete Structures,” 2008, filed as Exhibit 2026 in Case No. PGR2019-00063 on Dec. 13, 2019, 10 pages.
Irish Concrete Federation, Comprehensive Fire Protection and Safety with Concrete, Dec. 2007, filed as Exhibit 2027 in Case No. PGR2019-00063 on Dec. 13, 2019, 33 pages.
MontgomeryTownship Department of Planning and Zoning, Basement Finish/Remodel Code, 2009, filed as Exhibit 2028 in Case No. PGR2019-00063 on Dec. 13, 2019, 5 pages.
Township of Hillsborough, Sample Guide for Finish Basement Requirements in Existing One and Two Family Dwellings, Jan. 30, 2012, filed as Exhibit 2029 in Case No. PGR2019-00063 on Dec. 13, 2019, 5 pages.
Lstiburek, J., “Understanding Basements,” Building Science Digest 103, filed as Exhibit 2030 in Case No. PGR2019-00063 on Dec. 13, 2019, 18 pages.
Moisture Control in Buildings: The Key Factor in Mold Prevention, 2nd Edition, 2009, filed as Exhibit 2031 in Case No. PGR2019-00063 on Dec. 13, 2019, 67 pages.
U.S. Department of Agriculture, Forest Service, Wood-Frame House Construction, Agriculture Handbook No. 73, Apr. 1975, filed as Exhibit 2032 in Case No. PGR2019-00063 on Dec. 13, 2019, 12 pages.
CEL Consulting, Inc., Testing of Joist Hangers per AC13 “Acceptance Criteria for Joist Hangers and Similar Devices,” filed as Exhibit 2033 in Case No. PGR2019-00063 on Dec. 13, 2019, 17 pages.
Patent Owner's Preliminary Response to the Petition for Post Grant Review filed in Case No. PGR2019-00063 on Dec. 13, 2019, 120 pages.
Petitioner Simpson Strong-Tie Company Inc.'s Reply to Patent Owner's Preliminary Response filed in Case No. PGR2019-00063 on Feb. 10, 2020, 9 pages.
Supplemental Declaration of W. Andrew Fennell in Support of Petitioner's Reply to Patent Owner's Preliminary Response filed in Case No. PGR2019-00063 on Feb. 10, 2020, 6 pages.
Minutes of Telephonic Meeting Held on Jan. 30, 2020, filed in Case No. PGR2019-00063 on Jan. 30, 2020, 29 pages.
Order Denying Plaintiffs' Motion for Preliminary Injunction, Case No. 3:19-w-04683, filed Oct. 4, 2019, pp. 20.
Reply in Support of Plaintiffs' Notice of Motion and Motion for Preliminary Injunction; Memorandum of Points and Authorities in Support of Motion, Case No. 3:19-cv-04683, filed Sep. 13, 2019, pp. 18.
Answer, Affirmative Defenses, and Counterclaim to Complaint for Patent Infringement, Case No. 3:19-cv-04683, filed Sep. 3, 2019, pp. 8.
Memorandum of Points and Authorities in Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, filed Sep. 5, 2019, pp. 31.
Declaration of W. Andrew Fennell in Support of Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, filed Sep. 5, 2019, pp. 91.
Declaration of Sam Hensen in Support of Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683 filed Sep. 5, 2019, pp. 8.
Investigation of U.S. Appl. No. 16/225,517, Exhibit A to Declaration of W. Andrew Fennell in Support of Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, dated Jun. 3, 2019, pp. 68.
Declaration of Joseph V. Mauch in Support of Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, filed Sep. 5, 2019, pp. 4.
Invalidity Claim Chart, U.S. Pat. No. 10,316,510, Exhibit E to Declaration of Joseph V. Mauch in Support of Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, dated Sep. 2019, pp. 30.
Invalidity Claim Chart, U.S. Pat. No. 10,316,510, Exhibit F to Declaration of Joseph V. Mauch in Support of Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, dated Sep. 2019, pp. 30.
Invalidity Claim Chart, U.S. Pat. No. 10,316,510, Exhibit G to Declaration of Joseph V. Mauch in Support of apposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, dated Sep. 2019, pp. 32.
Invalidity Claim Chart, U.S. Pat. No. 10,316,510, Exhibit H to Declaration of Joseph V. Mauch in Support of Opposition to Motion for Preliminary Injunction, Case No. 3:19-cv-04683, dated Sep. 2019, pp. 32.
Petition for Post-Grant Review of U.S. Pat. No. 10,316,510, filed Sep. 5, 2019, pp. 152.
Declaration of W. Andrew Fennell in Support of Petition for Post-Grant Review of U.S. Pat. No. 10,316,510, Exhibit 1003 , dated Sep. 5, 2019, pp. 172.
Fire-Rated Assemblies in Commercial Construction, Exhibit 1016 to Petition for Post-Grant Review of U.S. Pat. No. 10,316,510, dated May 2014, pp. 106.
Fire Resistance Design Manual Sound Control, Exhibit 1017 to Petition for Post-Grant Review of U.S. Pat. No. 10,316,510, dated Jun. 2012, pp. 230.
International Building Code,Exhibit 1018 to Petition for Post-Grant Review of U.S. Pat. No. 10,316,510, dated May 2011, pp. 12.
Stainless steel for durability, fire-resistance and safety, Exhibit 1030 to Petition for Post-Grant Review of U.S. Pat. No. 10,316,510, pp. 8.
Infringement Claim Charts, Exhibit 1031 to Petition for Post-Grant Review of U.S. Pat. No. 10,316,510, dated Aug. 2019, pp. 20.
Decision Granting Institution of Post-Grant Review issued in Case No. PGR2019-00063 on Mar. 12, 2020, 63 pages.
Patent Owner's Sur-Reply filed in Case No. PGR2019-00063 on Feb. 20, 2020, 10 pages.
Patent Owner's Corrected Sur-Reply filed in Case No. PGR2019-00063 on Mar. 3, 2020, 9 pages.
Supplemental Declaration of W. Andrew Fennell in Support of Petitioner's Reply to Patent Owner's Preliminary Response filed as Exhibit 1036 in Case No. PGR2019-00063 on Feb. 10, 2020, 6 pages.
Supplemental Declaration of Dr. Reynaud Serrette, filed as Exhibit 2034 in Case No. PGR2019-00063 on Feb. 19, 2020, 5 pages.
Trimber, K. A., et al., “Measuring Moisture in Walls,” Interface, Apr. 2012, filed as Exhibit 2035 in Case No. PGR2019-00063 on Feb. 19, 2020, 8 pages.
U.S. Department of Housing and Urban Development, Office of Policy Development and Research, Building Concrete Masonry Homes: Design and Construction Issues, filed as Exhibit 2036 in Case No. PGR2019-00063 on Feb. 19, 2020, 43 pages.
CGC Inc., The Gypsum Construction Handbook, Centennial Edition, 2005, filed as Exhibit 2037 in Case No. PGR2019-00063 on Feb. 19, 2020, 34 pages.
Clarkwestern Dietrich Building Systems LLC, Furring Channel/Hat Channel, filed as Exhibit 2038 in Case No. PGR2019-00063 on Feb. 19, 2020, 3 pages.
ASTM International, Standard Specification for Testing and Establishing Allowable Loads of Joist Hangers, Designation: D7147-11, filed as Exhibit 2039 in Case No. PGR2019-00063 on Feb. 19, 2020, 10 pages.
APA, Floor Construction, an Excerpt of the Engineered Wood Construction Guide, Dec. 2019, filed as Exhibit 2040 in Case No. PGR2019-00063 on Feb. 19, 2020, 16 pages.
International Code Council, 2012 International Building Code, 2011, filed as Exhibit 2041 in Case No. PGR2019-00063 on Feb. 19, 2020, 17 pages.
Supplemental Declaration of Dr. Reynaud Serrette, filed as Exhibit 2042 in Case No. PGR2019-00063 on Feb. 26, 2020, 5 pages.
Petitioner Simpson Strong Tie Company Incs Opposition to Patent Owners Contingent Motion to Amend, Case PGR2019-00063, U.S. Pat. No. 10,316,510, Aug. 27, 2020, 30 pages.
Petitioner Simpson Strong Tie Company Incs Reply to Patent Owners Response, Case PGR2019-00063, U.S. Pat. No. 10,316,510, Aug. 27, 2020, 35 pages.
Exhibit 1038 Serrette Deposition Transcript, Case PGR2019-00063, Jul. 29, 2020, 272 pages.
Exhibit 1039 Fennell Declaration, Case PGR2019-00063, U.S. Pat. No. 10,316,510, Aug. 27, 2020, 28 pages.
Exhibit 1040 Definition, 7 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 1044—Deposition of Dr. Reynaud Serrette, Dec. 22, 2020, 116 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Petitioner's Sur-Reply to Patent Owner's Reply to Petitioner's Opposition to Patent Owner's Revised Contingent Motion to Amend, Dec. 31, 2020, 17 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 2058—Patent Owner's Notice of Submission of Demonstrative Exhibits for Jan. 14, 2021 Oral Hearing, Jan. 11, 2021, 83 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 1045—Petitioner's Demonstratives for Oral Argument, Jan. 14, 2021, 77 pages.
Patent Owner's Response to the Petition for Post Grant Review filed in Case No. PGR2019-00063 on Jun. 4, 2020, 115 pages.
Patent Owner's Contingent Motion to Amend Under 37 C.F.R. Section 42.221 filed in Case No. PGR2019-00063 on Jun. 4, 2020, 41 pages.
Videoconference Deposition of W. Andrew Fennell filed as Exhibit 2043 in Case No. PGR2019-00063 on Jun. 4, 2020, 61 pages.
Third Supplemental Declaration of Dr. Reynaud Serrette filed as Exhibit 2044 in Case No. PGR2019-00063 on Jun. 4, 2020, 44 pages.
International Code Council, 2012 International Building Code, 2011, filed as Exhibit 2045 in Case No. PGR2019-00063 on Jun. 4, 2020, 6 pages.
Buchanan, A. H., Structural Design for Fire Safety, 2001, filed as Exhibit 2046 in Case No. PGR2019-00063 on Jun. 4, 2020, 99 pages.
ASTIM International, Standard Test Methods for Fire Tests of Building Construction and Materials, E119-19, filed as Exhibit 2047 in Case No. PGR2019-00063 on Jun. 4, 2020, 37 pages.
American Wood Council, Calculating the Fire Resistance of Exposed Wood Members, Technical Report 10, American Forest & Paper Association, filed as Exhibit 2048 in Case No. PGR2019-00063 on Jun. 4, 2020, 55 pages.
New Oxford American Dictionary, Second Edition, Definition of “through,” filed as Exhibit 2049 in Case No. PGR2019-00063 on Jun. 4, 2020, 2 pages.
McEntee, P., “What You Should Know About the New DGH Fire Wall Hanger Options,” Feb. 2018, filed as Exhibit 2050 in Case No. PGR2019-00063 on Jun. 4, 2020, 3 pages.
Memorandum of Points and Authorities in Opposition to Motion for Preliminary Injunction filed as Exhibit 2051 in Case No. PGR2019-00063 on Jun. 4, 2020, 31 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Preliminary Guidance Patent Owner's Motion to Amend, Sep. 21, 2020, 12 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Patent Owner's Sur-Reply, Oct. 8, 2020, 37 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Revised Motion to Amend, Oct. 8, 2020, 43 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Petitioner Simpson Strong-Tie Company Inc.'s Opposition to Patent Owner's Revised Contingent Motion to Amend, Nov. 19, 2020, 31 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Patent Owner's Reply in Support of Its Revised Motion to Amend, Dec. 10, 2020, 21 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 1042—Declaration of W. Andrew Fennell in Support of Petitioner's Reply and Opposition to Patent Owner's Revised Contingent Motion to Amend, Nov. 19, 2020, 31 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 1043—Blank Rrendering of Tsukamoto Reference, 1 page.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 2054—Sheet Metal Stamping 101 Parts I-V, 39 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 2055—Declaration of Dr. Serrette in Support of the Revised Contingent Motion to Amend, Oct. 7, 2020, 12 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Exhibit 2056—ANSI/AISC 360-10 Specification for Structural Steel Buildings, Jun. 22, 2010, 35 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Declaration of Dr. Reynaud Serrette in Support of the Reply to the Opposition to the Revised Contingent Motion to Amend, Dec. 10, 2020, 57 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Final Written Decision, Mar. 1, 2021, 143 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Record of Oral Hearing, Jan. 14, 2021, 73 pages.
Petitioner's Request for Rehearing of the Final Written Decision filed in Case No. PGR2019-00063 on Apr. 12, 2021, 17 pages.
Simpson Strong-Tie Company Inc. v. Columbia Insurance Company Case PGR2019-00063, Decision Denying Petitioner's Request on Rehearing of Final Written Decision, May 21, 2021, 9 pages.
Post Grant Review Petition of U.S. Pat. No. 11,021,867 dated Aug. 13, 2021, pp. 137.
Declaration of W. Andrew Fennell in Support of Petition for Post-Grant Review of U.S. Pat. No. 11,021,867 dated Aug. 13, 2021, pp. 155.
Pages of Oxford Compact English Dictionary—Simpson Strong-Tie Company Inc. EX 1037, published in 2000, pp. 6.
Corrected Opening Brief of Appellant in the Appeal of PGR2019-00063, dated Nov. 12, 2021, pp. 292.
U.S. Patent and Trademark Office Decision Granting Institution of Post-Grant Review, U.S. Patent Trial and Appeal Board, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case No. PGR2021-00109, U.S. Pat. No. 11,021,867 B2, Paper 42, dated Mar. 17, 2022, 89 pages.
Columbia Insurance Company, Patent Owner's Preliminary Response to the Petition for Post Grant Review, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Dec. 21, 2021, 119 pp.
Dr. Reynaud Serrette, Declaration, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Dec. 21, 2021, 95 pp.
Reynaud Serrette, Ph.D. Curriculum Vitae, undated, 15 pp.
Columbia Insurance Company, Request for Issuance of Certificate of Correction, U.S. Pat. No. 11,021,867, Dec. 2, 2021, 12 pp.
International Code Council (ICC), 2012 International Building Code, May 2011, 70 pp.
ASTM International, Designation: E119-12a, Standard Test Methods for Fire Tests of Building Construction and Materials, Sep. 2012, 34 pp.
ASTM International, Designation: E814-13, Standard Test Method for Fire Tests of Penetration Firestop Systems, Nov. 2013, 12 pp.
Simpson Strong-Tie Company Inc., DU/DHU/DHUTF, Fire Wall Hangers, 2021, 2 pp.
W. Andrew Fennell, Declaration in Support of Petitioner's Reply and Opposition to Patent Owner's Contingent Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2019-00063, Aug. 27, 2020. ** UNSIGNED **.
Cooperative Patent Classification, Section E04B, Fixed Constructions, Building: General Building Constructions; Walls, e.g. Partitions; Roofs; Floors; Ceilings; Insulation or Other Protection of Buildings, Aug. 2021, 13 pp.
U.S. Patent and Trademark Office, Response for Certificate of Correction, Decision on Request filed Dec. 2, 2021, U.S. Pat. No. 11,021,867, Dec. 23, 2021, 2 pp.
U.S. Patent and Trademark Office, Certificate of Correction, U.S. Pat. No. 11,021,867, dated Dec. 28, 2021, 1 page.
Columbia Insurance Company, Patent Owner's Response to the Petition for Post Grant Review, Before the Patent Trial and Appeal Board, Jun. 9, 2022, 135 pp.
Columbia Insurance Company, Patent Owner's Contingent Motion to Amend Under 37 C.F.R. 42.221, Before the Patent Trial and Appeal Board, Jun. 9, 2022, 51 pp.
Ed Sauter, Tilt-Up Concrete Association, Tilt-Up Today, Connections in Tilt-Up Buildings, Jul. 1, 2008, 5 pp.
Hanley Wood University, Continuing Education course: Multifamily, Mid-Rise Buildings Using Wood Construction, a Cost-Effective and Sustainable Choice for Achieving High-Performance Goals, undated, 10 pp.
U.S. Dept. of Housing and Urban Development Office of Policy Development and Research, Review of Structural Materials and Methods for Home Building in the United States: 1900 to 2000, Jan. 25, 2001, 48 pp.
Whole Building Design Guide (WBDG), Strategies and Trends for Mid-Rise Construction in Wood, Mar. 10, 2017, 21 pp.
Simpson Strong-Tie Company, Inc., Fastening Systems Technical Guide, 2019, 164 pp.
Rob Thallon, Graphic Guide to Frame Construction, 4th ed, rev./updated, 2016, 258 pp.
Deposition Transcript of W. Andrew Fennell, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, May 25, 2022, 72 pp.
Deposition Transcript of W. Andrew Fennell, Before the Patent Trial and Appeal Board, Case No. PGR2019-00063, May 14, 2020, vol. 1, 61 pp.
Dr. Reynaud Serrette, Supplemental Declaration, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Jun. 9, 2022, 88 pp.
Simpson Strong-Tie Company, Inc., Petitioner's Reply to Patent Owner's Response, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Sep. 1, 2022, 39 pp.
Simpson Strong-Tie Company, Inc., Petitioner's Opposition to Patent Owner's Contingent Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Sep. 1, 2022, 33 pp.
Deposition Transcript of Dr. Reynaud Serrette, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Aug. 22, 2022, vol. 1, 270 pp.
Brick Industry Association, Technical Notes on Brick Construction: Fire Resistance of Brick Masonry, Mar. 16, 2008, 16 pp.
W. Andrew Fennell, Declaration in Support of Petitioner's Reply to Patent Owner's Response and Petitioner's Opposition to Patent Owner's Contingent Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Sep. 1, 2022, 87 pp.
PABCO Gypsum, QuietRockES product specifications, 2013, 1 page.
National Timber Development Council and Forest and Wood Products Research and Development Corporation (FWPRDC), Multi-Residential Timber Framed Construction, Design Construction Manual, Class1a Buildings, Jun. 2000, 44 pp.
United States Gypsum Company (USG), Sheetrock Brand MH UltraLight Panels TUF-BASE, 2013, 2 pp.
Sterling Publishing, Woodframe Houses: Construction and Maintenance, 1981, excerpt from pp. 68, 115, and 127, 5 pp.
Scott A. Daniels, Neil T. Powell and Stephen E. Belisle, Administrative Law Judges, Preliminary Guidance Patent Owner's Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, undated, 17 pp.
Columbia Insurance Company, Revised Contingent Motion to Amend Under 35 C.F.R. 42.221, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 13, 2022, 53 pp.
Columbia Insurance Company, Sur-Reply to the Petition for Post Grant Review, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 13, 2022, 39 pp.
Deposition Transcript of W. Andrew Fennell, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 5, 2022, 78 pp.
Dr. Reynaud Serrette, Third Declaration, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 13, 2022, 14 pp.
Simpson Strong-Tie Company, Inc., Responsive Brief and Opening Cross-Appeal Brief, United States Court of Appeals for the Federal Circuit, Case Nos. 21-2145 and 21-2157, Feb. 3, 2022, 101 pp.
Columbia Insurance Company, Appellant's Response and Reply Brief, United States Court of Appeals for the Federal Circuit, Case Nos. 21-2145, 21-2157, Apr. 29, 2022, 70 pp.
Simpson Strong-Tie Company, Inc., Reply Brief, United States Court of Appeals for the Federal Circuit, Case Nos. 21-2145, 21-2157, Jun. 10, 2022, 41 pp.
Columbia Insurance Company, Patent Owner's Revised Contingent Motion to Amend Under 37 CFR 42.221, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 13, 2022, 53 pages (including Appendix).
Columbia Insurance Company, Patent Owner's Sur-Reply to the Petition for Post-Grant Review, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 13, 2022, 39 pages.
Deposition Transcript of W. Andrew Fennell, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 5, 2022, 78 pages.
Dr. Reynaud Serrette, Third Declaration, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Oct. 13, 2022, 14 pages.
Simpson Strong-Tie Company Inc., Petitioner's Opposition to Patent Owner's Revised Contingent Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Nov. 23, 2022, 34 pages.
W. Andrew Fennell's Declaration in Support of Petitioner's Opposition to Patent Owner's Revised Contingent Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Nov. 23, 2022, 65 pages.
Preliminary Guidance, Columbia Insurance Company, Patent Owner's Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Sep. 26, 2022, 17 pages.
Oxford University Press, Inc., The New Oxford American Dictionary, second edition, definition of “manufacture”, 2005, 4 pages.
Columbia Insurance Company, Patent Owner's Exhibit 2066—Blank renderings of the Hanger Shown in Figs. 5-7, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, 2 pages.
Simpson Strong-Tie Company Inc., Wood Construction Connectors 2013-2014 Catalog, 106 pages.
Dr. Reynaud Serrette, Fourth Declaration, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Dec. 16, 2022, 56 pages.
Deposition Transcript of William Andrew Fennell, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Dec. 8, 2022, 125 pages.
Columbia Insurance Company, Patent Owner's Reply in Support of Its Revised Contingent Motion to Amend Under 35 CFR 42.221, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Dec. 16, 2022, 23 pages.
Deposition Transcript of Dr. Reynaud Serrette, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Dec. 29, 2022, 83 pages.
Simpson Strong-Tie Company Inc., Petitioner's Sur-Reply to Patent Owner's Reply to Petitioner's Opposition to the Patent Owner's Revised Contingent Motion to Amend, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Jan. 6, 2023, 21 pages.
Columbia Insurance Company, Patent Owner's Demonstratives, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Jan. 2023, 94 pages.
Simpson Strong-Tie Company Inc., Petitioner's Demonstratives for Oral Argument, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, Jan. 2023, 69 pages.
Record of Oral Hearing held Jan. 17, 2023, Before the Patent Trial and Appeal Board, Case No. PGR2021-00109, 78 pages.
Invalidity Claim Chart, U.S. Pat. No. 11,021,867, Exhibit A-1 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 17 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,021,867, Exhibit A-2 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 14 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,021,867, Exhibit A-3 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 18 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,021,867, Exhibit A-4 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 22 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,021,867, Exhibit A-5 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 9 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,021,867, Exhibit A-6 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 7 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-1 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 58 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-2 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 27 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-3 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 3 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-4 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 67 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-5 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 76 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-6 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 4 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-7 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 43 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-8 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 4 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-9 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 60 pp.
Invalidity Claim Chart, U.S. Pat. No. 11,649,626, Exhibit B-10 to Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 5 pp.
Invalidity Contentions, Simpson Strong-Tie Company, Inc.'s Invalidity Contentions Pursuant to Patent Local Rules 3-3 and 3-4, dated Oct. 20, 2023, 15 pp.
Complaint for Patent Infringement; Jury Trial Requested, dated May 17, 2023, U.S. District Court, Northern District of California, Columbia Insurance Co. and MiTek Inc. v. Simpson Strong-Tie Company Inc., 562 pages.
“Fully-loaded Getting the Most from Sloped and Skewed w Hangers”, Connector Update, vol. 2, No. 3, Nov. 1990, 2 pages.
Declaration of W. Andrew Fennell in Support of Petition for Post-Grant Review of U.S. Pat. No. 11,649,626, dated Aug. 15, 2023, U.S. Patent Trial and Appeal Board, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case PGR2023-00047, 226 pages.
Petition for Post-Grant Review of U.S. Pat. No. 11,649,626, dated Aug. 17, 2023, U.S. Patent Trial and Appeal Board, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case PGR2023-00047, 203 pages.
Declaration of W. Andrew Fennell in Support of Petition for Post-Grant Review of U.S. Pat. No. 11,649,626, dated Aug. 17, 2023, U.S. Patent Trial and Appeal Board, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case PGR2023-00048, 260 pages.
Petition for Post-Grant Review of U.S. Pat. No. 11,649,626, dated Aug. 17, 2023, U.S. Patent Trial and Appeal Board, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case PGR2023-00048, 227 pages.
Declaration of W. Andrew Fennell in Support of Petition for Post-Grant Review of U.S. Pat. No. 11,649,626, dated Aug. 15, 2023, U.S. Patent Trial and Appeal Board, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case PGR2023-00049, 225 pages.
Petition for Post-Grant Review of U.S. Pat. No. 11,649,626, dated Aug. 17, 2023, U.S. Patent Trial and Appeal Board, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case PGR2023-00049, 197 pages.
Appellant Simpson Strong-Tie Company Inc.'s Principal Brief, dated Oct. 16, 2023, U.S. Court of Appeals for the Federal Circuit, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case No. 2023-1944, 306 pages.
Final Written Decision of the Patent Trial and Appeal Board, Simspon Strong-Tie Company Inc. v. Columbia Insurance Company, PGR2021-00109, U.S. Pat. No. 11,021,867B2, Paper 73, dated Mar. 15, 2023, 165 pages.
Appellee Columbia Insurance Company's Brief, dated Nov. 27, 2023, U.S. Court of Appeals for the Federal Circuit, Simpson Strong-Tie Company Inc. v. Columbia Insurance Company, Case No. 2023-1944, 87 pages.
Related Publications (2)
Number Date Country
20230193619 A1 Jun 2023 US
20230417043 A2 Dec 2023 US
Provisional Applications (1)
Number Date Country
61922531 Dec 2013 US
Continuations (5)
Number Date Country
Parent 17235349 Apr 2021 US
Child 18112843 US
Parent 16433799 Jun 2019 US
Child 17235349 US
Parent 16225517 Dec 2018 US
Child 16433799 US
Parent 15675409 Aug 2017 US
Child 16225517 US
Parent 14555049 Nov 2014 US
Child 15675409 US