The present disclosure generally relates to a method for constructing a public key system, particularly, to a method of constructing a public key system in quotient algebra partition (QAP)-based homomorphic encryption (HE).
Due to the advancement of science and technology and the development of the industry, especially, the advent of the digital age, any plaintext on the internet is desired to be transferred as a completely encrypted message, to be decrypted securely all the time, and moreover to be proceed in an encrypted state. However, current schemes of homomorphic encryption (HE) are built on the so-called lattice-based cryptography, a class of post-quantum cryptosystems allowing to prevent data from attacks of quantum algorithms. A proportion of noises would occur in every step of encrypted computation. It is required to reduce the effect of the noise to avoid computational errors. In other words, the computation process leads to approximated solutions as an approximation and an exponential overhead of computation is needed to reduce noises during the process. The current achievement of homomorphic encryption are quite limited and the algorithms and the operators computed in the homomorphic encryption would be revealed during the homomorphic encryption. It is a research direction for researchers that how to provide exact solutions instead of approximated ones, conduct blind evaluations without secret disclosures, and allowing problem-dependent optimizations with modest overheads.
Accordingly, inventors of the present inventive concept conduct a deep discussion on the aforementioned requirement based on his research experiments in the related fields and seek for a solutions actively. After a long time research and multiple tests, the inventor finally accomplishes the present invention without shortcomings of the prior art and improve the progressively and practicality.
In light of solving the foregoing problems of the prior art, the present inventive concept provides a method of constructing a public key system in quotient algebra partition (QAP)-based homomorphic encryption (HE). The schemes of homomorphic encryption are constructed and computed in the framework QAP. After a quantum code is chosen, a plaintext would be encoded as a ciphertext characterized by a string of longer length with a random add-in correctable error; an arithmetic operation acting on the ciphertext would be encoded as an encoded operator acts on the ciphertext. Furthermore, the method would conduct blind evaluations without secret disclosures, and provide exact solutions instead of approximated ones with modest overheads.
The present inventive concept further provides a method of constructing a public key system in QAP-based homomorphic encryption. It allows provide an exact solutions rather than approximated ones due to applications of delicately-designed invertible gates, such as spinor, SWAP, CNOT, Toffoli gate, Controlled SWAP, Multi-Controlled Gate, in Hilbert space to conduct computations.
The present inventive concept further provides a method of constructing a public key system in QAP-based homomorphic encryption. It conducts encoded arithmetic operation and the operators are arranged to attain the design of one-way function as fully blind operators which are characterized by operators acting on the ciphertext.
The present inventive concept further provides a method of constructing a public key system in QAP-based homomorphic encryption which is enable to allow problem-dependent optimizations with modest overheads.
The method of the present inventive concept comprises:
S1. encryption: a quantum code [n, k, C], which is structurally a QAP and wherein n>k, is chosen by a data receiver at first;
S11. key generation: the data receiver generates a public key, Keypub, to encrypt data and a private key, Keypriv, to decrypt data;
In an embodiment of the present inventive concept, the public key is represented by
Keypub=(VQen, Gen
where Qen is an n-qubit encoding in [n, k, C], V is an n-qubit permutation, Gen
The method of the present inventive concept further comprises:
S12. encoding: data provider provides k-qubit plaintext, |x, preparing a blank state |0 and |x to cast into a product state |0⊗|x of n qubits; an error generator Gen
The method of the present inventive concept further comprises:
S2. Computation:
S21. a k-qubit arithmetic operation M is given to be operated on the encrypted state |ψen; the k-qubit arithmetic operation M is written as n-qubit operation =I2
Uen=PQ†enV†=(PW1P1)(P†2W†11W1P1)(P†1P0)(P†0W†12W1P0)(P†0W2),
where Q†enV†=W1W2 with a qubit permutation W1 and an operator W2 comprising Spinor, CNOTs, Toffolis, SWAPs, Controlled SWAPs, Multi-Control Gate, PJ=0,1 and P are qubit permutations following PW1P1=I2
the data provider sends the encoded computational instructions Uen to the computation provider and the computation provider receives the computational instructions to computes Uen|ψen.
The method of the present inventive concept further comprises:
S3. Decryption: the computation provider conducts homomorphic encryption computation Uen|ψen and sends the encrypted results to the data receiver; the data receiver decrypts the results by applying the private key Keypriv=†P† to the state Uen|ψen, which is written as
†P†Uen|ψen=|λ⊗M|x;
with an (n−k)-qubit syndrome state |λ, and then obtains the result M|x.
The present inventive concept is described by the following specific embodiments. Those with ordinary skills in the arts can readily understand other advantages and functions of the present inventive concept after reading the disclosure of this specification. Any changes or adjustments made to their relative relationships, without modifying the substantial technical contents, are also to be construed as within the range implementable by the present inventive concept.
Moreover, the word “exemplary” or “embodiment” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as exemplary or an embodiment is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word “exemplary” or “embodiment” is intended to present concepts and techniques in a concrete fashion.
As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more,” unless specified otherwise or clear from context to be directed to a singular form.
Please refer to
According to the present inventive concept, the encryption in the method to obtain a ciphertext, i.e. |ψen, with longer codes comprises the steps of key generation and encoding. In the step of key generation, a public key, Keypub, to encrypt data and a private key, Keypriv, to decrypt data would be generated. In this code system, the public key may be represented by Keypub=(VQen, Gen
When the encoded state |ψen=|0⊗|x (3) may be obtained in the encryption, the vector |ψen means a encoded state, namely a ciphertext, and ĒVQen is a product by three operations. An n-qubit string |0⊗|x is a tensor product of an (n−k)-qubit basic state and a k-qubit basic state |x. For example, n=5, k=3, |x=|111, |0⊗|x=|00⊗|111=|00111.
In the step of computation, a k-qubit computation M |x is realized by an equivalent homomorphic encryption computation, that is, an encoded operation Uen on the encrypted state of |ψen. Because Uen is an operation of homomorphic encryption, which is an encoding of the k-qubit operation M (represented as a 2k×2k matrix or composed of elementary gates), which may be represented as a 2n×2n matrix or composed of elementary gates; Uen|ψen means the operation Uen is conducted on the ciphertext |ψen, which results an n-qubit state and achieves Uen|ψen (4).
Finally, in the step of decryption, Uen|ψen (4) is decrypted. The decryption is conducted by the Keypriv=†P† which is generated by the step of the key generation at the beginning, which is written as †P†Uen|ψen=|λ⊗M|x (5), with an (n−k)-qubit syndrome state |λ, and then obtains the result M|x. Wherein †P† represents the private key of the code system, which is a product of the operations alt and Pt (each of the two operations may be represented as a 2n×2n matrix or composed of elementary gates, respectively), |λ is an (n−k)-qubit string and M|x is a k-qubit string (which is an original computation without encryption).
Please refer to
According to an embodiment of the present inventive concept, the method may comprise Step S2. Computation. A k-qubit arithmetic operation, M, is given to be operated on the encrypted state |ψen; the k-qubit arithmetic operation M is written as n-qubit operation =I2
Uen=PQ†enV†=(PW1P1)(P†1W†11W1P1)(P†1P0)(P†0W†12W1P0)(P†0W2),
where Q†enV†=W1W2 with a qubit permutation W1 and an operator W2 comprising elementary gates, such as Spinor, CNOTs, Toffolis, SWAPs, Controlled SWAPs, Multi-Control Gate. PJ=0,1 and P are qubit permutations following PW1P1=I2
Then, Alice sends the encoded computational instructions Uen to cloud (10) (please refer to {circle around (4)} in
According to an embodiment of the present inventive concept, the method may comprise Step S3. Decryption. Cloud conducts homomorphic encryption computation Uen|ψen and sends the encrypted results to Alice (6) (please refer to {circle around (5)} in
†P†Uen|ψen=|λ⊗M|x;
with an (n−k)-qubit syndrome state |λ, and then obtains the result M|x.
Please refer to
According to the present inventive concept, CNOT (12) is a binary logic gate operation. A binary string, aiaj, is given, where ai is a control bit and aj is a target bit. ai remain the same and aj is transformed into aj⊕ai for the CNOT operation performing on aiaj.
According to the present inventive concept, Toffoli gate (13) is a trinary logic gate operation. A trinary string, aiajal, is given, where ai and aj are control bits and al is a target bit. ai and aj remain the same and al is transformed into=al⊕(ai∧aj) for the Toffoli gate operation performing on aiajal, where ∧ means a logical AND operation.
According to the present inventive concept, SWAP (14) is a binary logic gate operation. A binary string, aiaj, is given. The SWAP gate swaps the qubits, ai and aj, to generate a string ajai.
According to the present inventive concept, CSWAP (Controlled SWAP) ((15) is a trinary logic gate operation. A trinary string, aiajal is given, where ai is a control bit and aj and al is target bits. ai remains the same and aj is transformed into (aj∧āi)⊕(aj∧ai), al is transformed into (al∧āi)⊕(al∧ai) for the CSWAP operation on aiajal, where āi is a negation of the original bit ai, e.g.
According to the present inventive concept, Multi-Control gate (16) is a n-nary logical gate operation. A n-bit string, a1a2 . . . apap+1 . . . an, is given. Performing a multi-control p-gate ∧12 . . . pn−p(π107 ), if the first p-bit a1=a2= . . . =ap=1, the last (n−p)-bits are effected by the spinor πω,; otherwise the n-bit string remains the same.
In summary, the method of constructing a public key system in QAP-based homomorphic encryption of the present inventive concept allows so-called Homomorphic Encryption to be conducted without communication between the data receiver and the data provider during encryption. The method of the present inventive concept may conduct blind evaluations without secret disclosures, and allow problem-dependent optimizations with modest overheads.
The foregoing descriptions of the detailed embodiments are only illustrated to disclose the features and functions of the present inventive concept and not restrictive of the scope of the present inventive concept. It should be understood to those in the art that all modifications and variations according to the spirit and principle in the disclosure of the present inventive concept should fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
110142063 | Nov 2021 | TW | national |
The present application claims the priority of U.S. Provisional Patent Application No. 63/270,635, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20110142242 | Tanaka | Jun 2011 | A1 |
20210058244 | Jacak | Feb 2021 | A1 |
20220231844 | Berend | Jul 2022 | A1 |
Entry |
---|
Applications of single-qubit rotations in quantum public-key cryptography, by Nikolopoulos, published 2008 (Year: 2008). |
Key Generation: Foundations and a New Quantum Approach, by Yuen, published Dec. 2009 (Year: 2009). |
Number | Date | Country | |
---|---|---|---|
20230131601 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
63270635 | Oct 2021 | US |