Method of constructing curved structures as part of a habitable building

Information

  • Patent Grant
  • 6308490
  • Patent Number
    6,308,490
  • Date Filed
    Tuesday, May 2, 2000
    24 years ago
  • Date Issued
    Tuesday, October 30, 2001
    23 years ago
  • Inventors
  • Examiners
    • Friedman; Carl D.
    • Slack; Naoko
    Agents
    • Davis, Jr.; Albert W
Abstract
The invention uses flat, transparent or opaque plastic sheets to build curved structures that are used in constructing habitable buildings. The curved structure is divided into sections using a Computer Assisted Drafting program. The plastic sheets are cut into sides and top and bottom panels by a Computer Assisted Manufacturing program. The sides are joined to form a frame. The sides have curved upper and lower edges that match the curvature of the structure. The top and bottom panels are placed on the frame formed from the sides and bent to match the curvature of the sides. The panels are joined to the sides. The sections are joined together to form the curved surface.
Description




BACKGROUND OF THE INVENTION




The majority of new buildings today rely on the old methods that use bearing walls or columns to support a heavy roof or an intermediate floor. Structures built in this way are susceptible to forces caused by gravity, adverse weather and earthquakes. The stresses in the buildings induced by these forces can cause cracks in and eventually the failure of the building. Internal stresses at the corners and joints of such buildings are amplified by the construction methods. Failure of such buildings is initiated at their weakest points.




Conventional structures use massive quantities of materials and require excessive amounts of labor time and energy to construct. Forests are cut down to provide the lumber. Energy is expended to mine and create metal beams and components which carry the weight of the other building materials. Furthermore, a great amount of human, machine and combustible fuel energy is needed to transport and assemble the materials at job site.




Architects are designing buildings that are pleasing to the eye but are expensive to build. The buildings have curved surfaces which are very expensive to construct.




There has been a need for a method of creating a structure, such as a home, a vault for a mall, a sports stadium, etc. from less expensive materials and labor and a need for a method of building the structures more quickly.




Further, there has been a need for creating buildings that are more resistant to the forces of nature.




BRIEF SUMMARY AND OBJECTS OF THE INVENTION




One object of the invention is to provide an inexpensive method of creating structures of considerable strength while creating a building of customary appearance.




Another object is to be able to create structures of arbitrary curvature form inexpensively without the need for a structural skeleton.




A further object is to create structures of high strength out of lightweight materials in commercially available sizes by incorporating curved, dome-like or shell-like structures into the building.




Another object is to provide a transparent structure of considerable strength which could be used to create stadiums, arenas and sport complex roofs.




A further object is to create a fiber or cable reinforced, curved structure of very high strength.




Another object is to create an inexpensive method of making transparent structures, such as skylights, domes, vaults and canopies, which is of especial interest in the construction of malls and many other structures.




A further object is to provide a method for creating a virtual structure having curved portions in a computer, then sectioning the structure by the computer program into smaller, more manageable sections, forming the curved sections from flat/planar pieces. The forming step can be accomplished by feeding the data from the computer assisted drafting (CAD) program to a computer assisted machining program (CAM) in a cutting machine.




Another object is to make a 3-D curved structure without the use of expensive forming processes. Before the development of CAD-CAM, such a curved structure would have been very expensive to create.




A further object is to create buildings more quickly.




A further object is to build the structure in portions made from joining sections until the combined sections are of an appropriate size to be raised to form a portion of the structure.




Another object of the invention is to make a structure that is more resistant to the external forces experienced during snow, winds and earthquakes. This is accomplished in two ways. First, the weight of the structure is reduced. Second, the strength of a curved shell is exploited.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of the curved structure.





FIG. 2

is a perspective view of a rectangular, curved section of the curved structure.





FIG. 3

is a perspective view of the four sides of the curved section which create a form or frame.





FIG. 4

shows a front view of one of the sides.





FIG. 5

shows an exploded view of the pieces making a section with the top and bottom panels being shown as they are before they are bent on to the frame.





FIG. 6

is a cross-sectional view of alignment holes in the adjacent sides.





FIG. 7

is a front view of an alignment pin.





FIG. 8

is a cross-sectional view of joined adjacent sides.





FIG. 8A

is a cross-sectional view of another embodiment of the joined sides.





FIG. 9

is a cross-sectional view of a further embodiment of the joined sides.





FIG. 10

is a perspective view of a curved structure formed from triangular sections.





FIG. 11

is a perspective view of a triangular section.





FIG. 11A

is a perspective view of the joined sides of a triangular section.





FIG. 12

is an exploded, perspective view of groups of joined panels.





FIG. 13

is front view of a curved structure in the form of a vault.





FIG. 14

is a side view of a block used in a second, different embodiment of the invention.





FIG. 14A

is a perspective view of the second embodiment formed from triangular sections.





FIG. 14B

is a exploded, perspective view of the sections of FIG.


14


A.





FIGS. 15A-C

are exploded, side views of different embodiments of the joint between adjacent blocks.





FIG. 16

is a side view of an assembly of blocks.





FIG. 17

is cross-sectional view of a portion of the habitable enclosure.





FIG. 17A

is a cross-sectional view of another embodiment of a portion of the habitable enclosure.





FIG. 18

shows a perspective view of the first floor of one example of a habitable enclosure constructed according to the second embodiment.





FIG. 19

shows a perspective view of the ceiling assembly.





FIG. 19A

shows a section of the ceiling assembly of FIG.


19


.





FIG. 20

shows a perspective view of the ceiling assembly in place on the side walls.





FIG. 21

shows a perspective view of the attic side walls added to the enclosure.





FIG. 22

shows a perspective view of the roof added to the enclosure.











DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

shows a curved composite structure


1


formed of curved sections


2


having a rectangular form. The curved sections


2


can have a triangular form, a pentagonal form or any other multi-sided form. The curved sections


2


are formed from flat sides


3


,


4


,


5


,


6


and top and bottom flat panels


7


and


8


.




Preferably, the materials used in the sides and panels are plastics, such as acrylics, polycarbonates, etc. The plastics can be transparent, translucent, opaque or a combination depending on the requirements of the section. The thickness of the top and bottom panels is typically in the range of one sixteenth to one half of an inch.




In

FIG. 2

, one curved section


2


is shown. The curved section


2


is shown to have a very mild or gentle curvature. Such a curvature is created by a very large radius of curvature. The section


2


is part of a dome structure


1


and is therefore curved in two directions. As is shown more clearly in

FIGS. 2 and 3

, the sides


3


-


6


are formed so that their top and bottom edges are curved. The sides are joined to create a multi-sided form/frame


9


upon which the flat top and bottom panels are bent and secured.




The curved section could be created by just having sides with curved top or bottom edges and top or bottom panels, respectively. When the panel


7


or


8


is bent to form a gentle curve, the panel stress level will usually be in the elastic deformation range. Thus, there will be residual stresses in the panel trying to return it to a flat configuration. Those stresses are very low.





FIG. 4

shows a side


3


which is used to form the composite curved structure section


2


. The side


3


has an upper edge


11


and a lower edge


12


. The edges


11


and


12


are formed with a curvature that matches the desired curvature of the section


2


of the composite curved structure


1


. The edges


11


and


12


can be formed by removing material


11


′ and


12


′ from a straight edged, flat piece of material


3


′.




The removal of material can be performed by a computer operated cutting machine, having a rotating cutting device much like a router, that is fed information from the computer generated (virtual) structure that is to be built. The curvature can also be formed by casting the side with the desired curvature in a mold.





FIG. 5

shows top panel


7


that is rectangular and similar in shape to the bottom panel


8


, only larger. The top and bottom panels


7


and


8


are made from flat/planar elements. In an application as a skylight, the panel is made of transparent or translucent plastic.




The section


2


is formed by joining sides


3


,


4


,


5


,


6


to create a form or frame


9


, placing panels


7


,


8


on the form/frame


9


created by the joined sides, and bending and joining the top and bottom panels


7


,


8


to the sides


3


,


4


,


5


,


6


. Thus, the curvature of the section


2


is created by cutting away material


11


′ and


12


′ to form the desired curvature of edges


11


,


12


, by cutting the top and bottom panels


7


,


8


to rectangles to match the area of the form or frame


9


defined by the joined sides, by bending the panels


7


,


8


on to the sides


3


-


6


to match the curvature of the sides, and by joining the top and/or bottom panels


7


,


8


to the sides


3


-


6


.




In

FIG. 2

, sides


3


,


4


,


5


,


6


are joined along edges


13


to each other. Top and bottom panels


7


and


8


are bent on and joined to the upper and lower edges


11


and


12


. The bending is done during the joining operation. The panels are bent and held in place during the joining operation. The holding in place step can be accomplished by the use of tape, a hold down fixture or jig, tack welds, rivets, etc.




The joining of the sides


3


-


6


to each other can be performed by using a solvent for the plastic material from which the sides are made.




The joining of the panels


7


,


8


to the frame


9


created from the sides can be performed by adhesives, welds, mechanical devices such as rivets, etc. One such adhesive is WELD-ON 40TM, a Clear Two-Component, Reactive, High Strength Acrylic Cement used for joining acrylic materials. Another adhesive is a solvent for the plastic material from which the sides and the panels are made. The welding could be performed hot plate welders which apply heat to the areas to be welded.




The joints can be butt joints where the edge


13


of one side abuts the side of another side. Preferably as seen in

FIG. 3

, the side joints can also be made by chamfering the edges


13


at an angle of 45 degrees so that they can be joined to form the 90 degree corner of a rectangle. Of course, different angles of chamfer would be used for different forms of multi-sided sections.




The section


2


, when made of clear or translucent materials, can be used by itself or with other sections as a window or skylight. When made of opaque materials, the section or sections can be used to form other types of curved structures.




The structure of

FIG. 1

can be created in a computer as a virtual structure by the use of a computer assisted drafting (CAD) program. The structure can be divided by the CAD program into pieces/sections using either Cartesian or polar coordinates. Using Cartesian coordinates, the structure would be divided along X,Y and Z axes. Using polar coordinates, the structure would be divided by lines radiating from a point. The division of the structure into sections allows the structure to be made of planar pieces or sheets in sizes that are commercially available, such as 4×8 feet, 5×10 feet, etc.




The planar sections can be cut by the use of a computer assisted cutting machine (CAM). The data from the CAD program is fed into the CAM which then cuts the planar sections, such as the sides, the top and the bottom panels. The sides have the top and bottom edges cut to the desired curvature. The top and bottom panels are cut to fit the form or frame created by the joined sides. The cut planar pieces can be assembled to form sections in the field or in a factory and then transported to the field. The sections are then assembled to form the structure.




As shown in

FIG. 2

,


3


and


6


, the sides


3


-


6


can have alignment holes


14


. Preferably, the aligned holes


14


are formed with a countersunk portion


15


.

FIG. 7

shows a pin


16


having a shoulder


17


which fits into the countersunk portion


15


of the hole to prevent the pin


16


from falling into the inside of section


2


. Sections


2


are assembled side by side and aligned by the use of holes


14


and pins


16


. Each side is shown as having two holes


14


to more quickly achieve alignment.




To assemble, the pin


16


is placed in hole


14


until shoulder


17


seats in countersunk portion


15


. Then, the abutting section


2


is aligned with aforementioned section by placing the seated pin in the hole of side of the adjacent section. The shoulder


17


need not fit the whole of the countersunk portion


15


. Further, both holes


14


need not be countersunk. Further, no countersink would be needed where a pin is bonded in the hole of one side. Of course, other types of alignment devices can be used.





FIG. 8

shows two sections


2


assembled side by side/adjacent. Sides


3


-


6


have an adhesive


18


applied to the top portion by any applicable means such as nozzle, spray, roller, brush or tape. Suitable adhesives are 3M's VHB TM Coated Acrylic Foam Tapes and Adhesive Transfer Tapes (4905-4959 and F4960PC-F4973PC) or 3M's SCOTCH GRIP TM Plastic Adhesives (1099,1099L). The tape applicator would have at least one protective backing to make it easy to handle. The backing is used to lay the adhesive on the sides


3


-


6


, and then the backing is peeled off exposing the adhesive for contact with the adjacent side wall


3


-


6


or any adhesive applied to the adjacent side.




In the embodiment of

FIG. 8

, the adhesive


18


is placed at the top of area of the sides. The adhesive


18


forms a dam in the space/gap


21


between the adjacent sides


3


-


6


and panels


7


,


8


. The thickness of the adhesive forms a gap


21


, typically of about 0.05 inches, between the edges of the top panel


7


of adjacent sections. Preferably, the adhesive


18


should never fully harden so that it will be prevented from forming a high stress in the sides.




Another adhesive


22


can be placed in the gap


21


created by the dam formed by adhesive


18


. Typical adhesives


22


can be WELD ON 40 TM, 3M's VHB TM Coated Acrylic Foam Tapes, such as 4905 and 4910, or a solvent for the plastic of the side, such as a solvent for acrylics, polycarbonates, etc., which will melt the surface of the plastic of the adjacent surfaces thereby allowing the plastic to flow and bridge the gap where it solidifies.




In another embodiment shown in

FIG. 8A

, only 3M's tapes, 3M's VHB TM Coated Acrylic Foam Tapes and Adhesive Transfer Tapes (4905-4959 and F4960PC-F4973PC), are used. The tape


18


will fill the gap


21


and extend onto the side


3


-


6


, and there will be no need to form a dam since the adhesive on the tapes will not run. During the assembly, the adhesive


18


is placed on the sides before the sides are aligned adjacent to each other. The gap


21


between the top panels can be filled with an adhesive


18


or


22


, a caulk or left unfilled or partially filled.




The bottom panels


8


can be united by the same assembly steps. The structure


1


can be created by using either of the top panels, the bottom panels or both.





FIG. 9

shows sides


3


,


4


formed with cavities


23


,


24


. The cavities


23


,


24


form a larger cavity which is sealed by the dams created by adhesive


18


which is applied along the top and bottom edges of the cavities


23


,


24


. The cavities


23


,


24


are filled with a bonding agent


25


which can be the liquid, unset form of the plastic that is used for the side, such as a liquid acrylic if using acrylic sides. The bonding agent may contain fibers, cables or ropes


26


for reinforcement. The fibers, cables or ropes


26


can be made of FIBERGLAS TM, carbon, graphite, etc. The bonding agent


25


reinforced by fibers, cables or ropes is used to increase the strength of the structure


1


. The gap


21


can be filled with an adhesive


18


or


22


, a caulk or left unfilled or partially filled.





FIG. 10

shows a curved structure


1


in the shape of a portion of a dome. The dome can be divided into triangular curved sections


2


. Only four triangular sections


2


are shown in

FIG. 10

; however, the whole dome is made of curved triangular sections. The sections are similar to the rectangular sections of FIG.


1


.





FIGS. 11 and 11A

show a section


2


in the triangular form of FIG.


10


. There are three sides


3


-


5


, preferably equal in length and a top and bottom panel


7


,


8


. The sides


3


-


5


are formed with curved top and bottom edges


11


,


12


to match the curve of the dome. The sides


3


-


5


are joined to create a form or frame


9


. The triangular top and bottom panels


7


,


8


are placed on the form created by the edges


11


,


12


, bent to match the curve of the edges


11


,


12


and then joined to the edges.





FIG. 12

shows two groups A,B of triangular sections


2


that have been joined together by adhesives. The joined groups A,B are joined to each other by placing adhesives


18


on the sides


3


-


5


, then aligning the pins


16


in holes


14


(not shown) and pressing the sides of group A to the sides of group B. Eventually, two halves will be joined by the aforementioned technique to form the dome.





FIG. 13

shows a curved structure


1


formed as a vault-like roof for a walkway or other use. In this form, the sections may be curved in only one direction, instead of two as required for a dome. That is, only two opposite sides


3


,


5


or


4


,


6


will have their upper and lower edges


12


,


13


formed to match the desired curvature of the vault.





FIG. 14

shows a different embodiment of the overall concept of creating strong, lightweight curved structures. In this embodiment, the rectangular sections


2


are formed from materials, such as, rectangular, expanded polystyrene solid panels


30


′. Rectangular, solid formed panels or blocks


30


have curved upper and lower surfaces


31


and


32


and four tapered sides


33


-


36


. Sides


33


and


35


have a taper that is dictated by the radius of curvature R in a first direction of the curved structure


1


of which section


2


is a piece. If the structure


1


is curved in first and second directions, sides


34


and


36


will also have a taper dictated by the radius of curvature taken along the second direction. The shape of the panel or block


30


is shown somewhat exaggerated to clearly show the curvature and the taper. In another embodiment (not shown), either the top or the bottom surface of the foam block is left flat and the bottom or the top, respectively, is formed in the desired curve.




The curved rectangular, formed foam block


30


can be formed from a flat-sided block of material


30


′ by using a computer assisted cutting machine (CAM) having a rotating cutter much like a router. The procedures to be followed would be similar to those previously discussed. The blocks can also be cut by a device called a hot wire. Another method of forming would cast the rectangular, solid panel


30


with tapered sides and curved upper and lower surfaces. As in the previous embodiment, the blocks or panels


30


can have a triangular form, a pentagonal form or any other multisided form.




Preferably, the blocks


30


would be sized so that they could be cut from blocks


30


′ that are manufactured in commercially available sizes, such as 4×8 feet, 5×10 feet, etc.





FIG. 14A

shows the four foam blocks


30


of a triangular form joined togrther.





FIG. 14B

shows an exploded view of the four foam triangular blocks with holes


37


and pins


38


for alignment of the blocks.




The blocks


30


are assembled as shown in

FIGS. 12

,


14


B and


15


. The sides


33


-


36


are affixed to an adjacent block by any suitable means, such as, adhesive, interlocking joints, etc. or combination thereof. The interlocking joint could typically be a tongue and groove design, as shown in

FIG. 15A

, formed on sides


33


-


36


of the blocks


30


. The blocks


30


can also be aligned by using the tongue and groove interlocking joint or a pin


38


and hole


37


interlocking joint, as shown in

FIG. 15B

, in which the pin


38


of about an inch in diameter fits in holes


37


in adjacent blocks


30


. A suitable foam adhesive


39


, as shown in

FIG. 15C

, would be 3M FASTBOND TM Foam Adhesive


100


which is a neoprene based product. Preferably, the blocks


30


are joined by using an adhesive and an interlocking joint.




As shown in

FIG. 16

, once the desired number of blocks


30


are assembled, if the span is large, at least one side of the ceiling assembly


40


is coated with a precoat


41


that dries to form a hard, reinforcing shell. Suitable precoat materials


41


for use with polystyrene blocks


30


would be polyurethane or polyurea elastomer coatings. If the span is smaller, the assembly


40


is raised into position without the coating.





FIG. 17

shows side walls


42


which are formed by joining 4 foot×8 foot×2-12 inch foam blocks


30


′ along their long sides with adhesives, interlocking joints or other joining devices. The side walls


42


are positioned on concrete footings


51


in the trench


50


in the ground. Once the side walls


42


are erected, a cornice


43


or other ceiling support which can be formed from foam blocks is added to the top area of the side wall


42


by foam adhesive


39


. The cornice


42


is cut in a curve to follow the curvature of the ceiling where the ceiling meets the side walls


42


. The ceiling assembly is joined to the cornice, preferably by foam adhesive


39


. The side walls


42


and cornice


43


can be coated with a high strength coating


44


before the ceiling assembly is raised into position on the cornice


43


or ceiling support. However, the use of the high strength coating


44


on the side walls and cornice can usually wait until after the ceiling assembly is raised into place on the cornice.




The high strength coating


44


can be made of a resin having fibers of glass, carbon, etc. or a high performance, fiber reinforced concrete with a polymer additive for accelerated curing. A suitable concrete would be glass fiber reinforced concrete (GFRC) which can be sprayed on to the previous coating


41


or onto the foam


30


. The GFRC is 3-5% of Cem-FIL TM fibers (glass fibers), manufactured by THE VEROTEX Company, that are mixed into a 1:1 cement:sand and water matrix. Preferably, the coating


40


is made from a very thin layer of GFRC, such as {fraction (3/16)}-½ inches.




Once the ceiling assemblies


40


are in place, the coating


44


can be applied to unite the adjacent assemblies


40


to each other and the assemblies


40


to the side walls


42


and cornice


43


or ceiling support. The top side of the ceiling assembly


40


and the adjacent side walls


42


A are also coated with the high strength coating


44


. The side walls


42


,


42


A are also coated inside and outside with coating


44


. Once the lower portion of the side walls


42


has been coated, concrete fill


52


can be added to the trench


50


.




As shown in

FIG. 17A

, the side wall


42


can be cut to receive the ceiling assembly


40


. In this embodiment, the side wall


42


does not need a cornice


43


to support the assembly


40


. The outer foam blocks


30


A are trimmed by the use of a hot wire to match the side of the side wall


42


. The ceiling assembly


40


is joined to the side wall


42


at its top, preferably by foam adhesives


39


. A foam block


30


A′ is formed to fit the curvature of the ceiling block


30


A and is joined thereto. Foam block


30


A′ extends the side wall


42


past the ceiling assembly


40


to form an attic side wall


42


A.





FIGS. 17-22

show an example of a habitable enclosure created by the method of the second embodiment.

FIG. 18

shows the side walls


42


of a first floor with the high strength coating.

FIG. 19

shows the uncoated ceiling


40


that is placed on the side walls


42


with one of the triangular sections


2


exploded into FIG.


19


A.

FIG. 20

shows the ceiling assembly


40


in place on the side walls


42


. The sides


33


-


35


of sections


2


are trimmed by a hot wire to match the uncoated, side wall


42


.

FIG. 21

shows the attic side walls


42


A. The ceiling assembly


40


is shown as uncoated to more clearly show its form.

FIG. 22

shows the roof


45


added to the side walls


42


. All of the exterior surfaces, roof and walls, will be coated to provide additional strength. The ceiling assembly


40


is shown as uncoated on its exterior side as in

FIGS. 20-22

to more clearly show its form where it lays on the first floor side walls


42


.




CAD programs are available as AutoCad TM, ProE TM, Solid Works TM, Inventor TM, etc. CAM programs are available as Fast CAM TM, etc.




Some of the curvatures have been exaggerated from what would be the usual curvature so the curvature of the elements will be more apparent.



Claims
  • 1. The method of providing a composite curved plastic structure as part of a habitable building comprising the steps of,creating a drawing of the curved structure, said curved structure having plastic sides and a plastic top surface, forming the top edge of the sides to match the desired curvature of the curved structure thereby creating a curved top edge, forming the top surface from a flat plastic panel, assembling the sides and the top surface together to form the composite plastic curved structure by joining the plastic sides to each other, placing the top panel on the curved top edges of the sides, then elastically bending the top panel on to the curved edges of the sides and joining the panel to the curved edges of the sides thereby creating a self-supporting composite curved structure.
  • 2. The method of claim 1 wherein,the step of creating the drawing is performed with the aid of a computer by using a computer assisted drafting program.
  • 3. The method of claim 2 wherein,the steps of forming are performed by a computer assisted cutting machine that receives data from the computer assisted drafting program to guide the machine in forming steps.
  • 4. The method of claim 1 wherein,the step of creating the drawing of the structure divides the total structure into sections, assembling each section and then joining the sections to form the total structure.
  • 5. The method of claim 4 wherein,the sections are created from multi-sided forms.
  • 6. The method of claim 1 including the steps of,forming the bottom edges of the sides to match the curvature of the curved structure thereby creating a curved bottom edge, forming the bottom surface from a flat panel, assembling the sides and the bottom surface together to form the composite curved structure by joining the sides to each other, placing the bottom panel on the curved bottom edges of the sides, then elastically bending the bottom panel on to the curved edges of the sides and joining the bottom panel to the curved edges of the sides.
  • 7. The method of claim 1 wherein,the structure is made from flat plastic pieces.
  • 8. The method of claim 7 wherein,at least some of the plastic pieces are transparent.
Parent Case Info

This application is a continuation-in part of application Ser. No. 09/398,387 filed Sep. 17, 1999 and titled CURVED COMPOSITE BUILDING SYSTEM now abandoned, which claims benefit of Provisional No. 60/100,856 filed Sep. 18, 1998.

US Referenced Citations (6)
Number Name Date Kind
3807101 Cole Apr 1974
4221100 Lindblad Sep 1980
4723386 Sandow Feb 1988
4953094 Letcher, Jr. Aug 1990
5651220 dit Felix Jul 1997
6134849 Holler Oct 2000
Provisional Applications (1)
Number Date Country
60/100856 Sep 1998 US
Continuation in Parts (1)
Number Date Country
Parent 09/398387 Sep 1999 US
Child 09/563142 US