This invention relates generally to a method of constructing structures with a seismically-isolated base, in particular, a method of constructing structures supported on base-isolation devices.
The building codes used in the U.S. were based on one of three model codes: the Building Officials and Code Administrators International, Inc. (BOCA) National Building Code (NBC); the Southern Building Code Congress International, Inc. (SBCCI) Standard Building Code (SBC); and International Conference of Building Official's Uniform Building Code (ICBO's UBC). However, BOCA, ICBO and SBCCI recently formed the International Code Council® (ICC) and produced the International Building Code® (IBC), a single, unified family of building codes, for use throughout the U.S. The three model codes were merged into one in an effort to integrate the most current earthquake knowledge and seismic design technology into the building codes.
Scientists began studying earthquakes as early as 1880, but gathering meaningful and accurate seismic activity data proved difficult due to the irregularity of earthquake events and long intervals of inactivity therebetween. Only the more recent 1971 San Fernando earthquake and 1979 Imperial Valley earthquake helped develop a better understanding of building behavior and the effects of earthquakes on buildings.
It is now appreciated that it costs much less to prepare for earthquakes than it does to repair the damage afterward. According to research by National Earthquake Hazards Reduction Program (NEHRP), the costs of providing seismic-resistant features for the protection of life rarely exceed two percent of the construction costs for new buildings. However, the focus o n building safety measures has been more toward preventing fatalities than preventing structural damage. For example, Section 1626.1 of the 1997 UBC states that the purpose of the earthquake provisions is primarily to safeguard against major structural failures and loss of life, not to limit damage or maintain function. Similarly, the 1997 NEHRP indicates that its design earthquake ground motion levels could result in both nonstructural and structural damage. In fact, engineers recognize that new buildings could sustain so much damage in a severe earthquake that they may have to be demolished and rebuilt, yet still not collapse. While there is no question that there exist the necessary engineering expertise and technology to design and build highly earthquake-resistant structures, the cost would be prohibitive. As such, economic considerations have been balanced against minimum safety levels.
Base isolation devices (“BIDs”) are known for their ability to isolate building and structures from seismic activity or ground vibrations caused by heavy equipment. Most BIDs also damp the movement. BIDs are not limited to any particular physical structure but incorporate a variety of different mechanisms and means to accomplish their isolation and damping functions. BIDs are generally anchored to a footing or foundation from which they support the base of a structure. A rigid diaphragm often serves as the base of a building and generally includes a framed concrete slab with inlaid reinforcing steel bars (often referred to as “reinforcing steel ” or “rebars”), as shown in
BIDs can be installed either during construction of a new structure or in retrofitting of an existing structure. However, the use of BIDS has often been limited to “critical structures” such as hospitals and selected government facilities, leaving most single family homes, low rise apartments and condominiums, particularly those of light wood frame construction in the Western United States, vulnerable to earthquake damage. This problem is compounded by the fact that construction methods for light wood frame structures follow generally similar formats. Since construction budgets and schedules are often closely monitored, the construction industry disfavors disruptions or deviations from those methods that would increase cost or prolong construction schedules even if they render the structure safer and more earthquake-proof.
Methods for raising structures, including buildings and houses are also known. Houses may be lifted for a number of reasons, including increasing crawl space, correcting for settling of soil below the house, elevating for flood protection and elevating for earthquake retrofitting. During the elevation process, most houses are separated from their foundations, raised on hydraulic jacks, and held by temporary supports while a new or extended foundation is constructed below. The size and number of jacks, as well as the number and layout of the temporary lifting beam or plate, depend on the size, shape and size of house being lifted. Thus, while elevating a structure, such as a single family home, low rise apartments and condominiums, is known, the process can be expensive and dangerous. Walls may crack during the move and detailed calculations of allowable bearing pressures should be made to ensure proper use of supporting beams or plates during the elevation process. Moreover, since a popular guideline allows for lifting a house no more than 1/16 inch per day, the process can also be extremely time-consuming. As such, lifting an older house or building or one after construction has been completed for purposes of earthquake retrofitting, even if the house or building is smaller, can be logistically and/or economically prohibitive for the owner.
Access to the BIDS for inspection post installation is desirable to ensure the integrity of the BIDS over the lifetime of the building and after any significant seismic event. As such, the construction of basement or subbasement has often precluded the use of BIDS in almost all by the most crucial of newly constructed buildings. While the installation of BIDS in a new construction having a basement is possible, there is usually a significant increase in construction time and expenses stemming from the additional excavation and construction materials, such as for a subbasement to provide space and continued access to the BIDS and falsework to provide temporary support to the basement floor during construction.
Accordingly, there is a desire for a method of constructing a structure or building that allows for the installation of BIDs between with minimal deviations from generally known and accepted grading, ground preparation and construction practices and procedures. The method should also avoid or at least minimize delays in construction of the structure above the base or foundation and minimize the risk of damage to the structure. Moreover, the method should facilitate use of known or readily available technology and means to accomplish the installation of BIDs so as to minimize labor, material, cost and time.
The present invention provides a seismically-isolated structure and a method of constructing same. The seismically-isolated structure has a rigid diaphragm, a plurality of footings each positioned at least partially under the rigid diaphragm, and a plurality of base-isolation devices each positioned between a footing and the rigid diaphragm, wherein the rigid diaphragm was constructed in situ above the footings generally below its final elevation. To that end, a barrier is positioned between the rigid diaphragm and at least the footings to prevent bonding between the rigid diaphragm and the footings. The barrier, which may be structural or chemical or a combination thereof, may also span between the footings if appropriate. In one embodiment, each footing is configured with a recessed formation that accommodates a lifting device, and a surface for mounting a base-isolation device. In another embodiment, whereas each footing has a surface for mounting a base-isolation device, it is the rigid diaphragm this is configured with recessed formations to accommodate the lifting devices. In either embodiment, there is access to the base isolation device after installation for inspection and maintenance purposes.
The method of constructing a seismically-isolated structure includes providing footings in the ground, positioning a barrier between footings and a rigid diaphragm, constructing the rigid diaphragm on the barrier, elevating the rigid diaphragm, and installing base isolation devices between the footings and the rigid diaphragm. The method includes pouring concrete of the rigid diaphragm on the barrier which may be structural, chemical or a combination thereof, to prevent bonding of the rigid diaphragm with at least the footings, if not also to prevent bonding with the ground spanning between the footings. The method also includes constructing above the rigid diaphragm before elevating the rigid diaphragm and providing recessed formations in either the footings or the rigid diaphragm to accommodate lifting devices used to lift the rigid diaphragm. Moreover, the footings are configured to support the base isolation devices that are mounted below the rigid diaphragm and to allow access to the base isolation devices for inspection and maintenance subsequent to construction of the structure.
The present invention also provides for a structure having a basement that is built on a rigid diaphragm supported on base isolation devices. Footings and a concrete slab spanning therebetween form a subbasement surface on which a barrier is placed and the rigid diaphragm is formed thereon.
The present invention offers many advantages, including general adherence to known construction methods, costs and timelines for structures of comparable size and complexity, but provides for a structure that incorporates base-isolation devices for better adaptation against earthquakes or other types of seismic activity or ground vibrations.
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
a is a top plan view of a known rigid diaphragm of the prior art
b is a cross section view of one embodiment of the rigid diaphragm of
c is a detailed view of a portion of the cross section view of
d is a cross section view of an alternative embodiment of the rigid diaphragm of
e is a detailed view of a portion of the cross-section view of
f is a perspective view of the rigid diaphragm of
a is a top plan view of the construction of
b is a detailed view of a portion of
a is a cross section view of a footing of
b is a cross section view of the footing of
c is a cross section view of the footing of
a is a cross section view of a another footing of
b is a cross section view of the footing of
a. is a cross section view of another embodiment of construction with a seismically-isolated basement in accordance with the present invention;
b is a cross section view of the construction of
Shown in
As understood by one of ordinary skill in the art, the rigid diaphragm 12 is a structure that is rigid in its own plane. As illustrated in
Referring to back to
As shown in
It is understood by one of ordinary skill in the art that the BIDs are not limited to any particular type or structure since a variety of devices that provide seismic isolation and damping are known. Known BIDs and the like include those disclosed in U.S. Pat. Nos. 6,324,795, 6,318,031, 5,970,666, 4,942,703 and/or 4,644,714, the entire contents of which are incorporated by reference herein.
As shown in
In accordance with the present invention, a method of construction of the structure S begins with preparation of the ground 18, including rough grading to a selected height h, as shown in
When the footings 16 have sufficiently cured or are otherwise at a stage where they have reached a sufficient strength or load bearing ability, the rigid diaphragm 12 may be formed above it. In accordance with the present invention, a barrier or bond breaker 40 is placed on at least the flat surfaces 34 of the footings 16. The barrier may be structural or chemical in nature, or a combination thereof, and depending on factors including the type of barrier used and the type of ground spanning between the footings, the barrier may cover not only the flat surfaces 34 but the generally flat supporting surface 38 defined by the both the flat surfaces 34 of the footings and the ground 18 spanning therebetween.
Because the rigid diaphragm 12 is formed on the supporting surface 38, the barrier 40 serves to separate the rigid diaphragm 12 from at least the footing 16, if not also the ground 18 when appropriate, and prevents formation of bonds therebetween. Where the ground spanning between the footings has dirt or debris or is otherwise of a nature that does not bond significantly with concrete, the barrier need not cover the ground.
In particular, where the rigid diaphragm 12 is formed from concrete poured in situ (that is, poured on site onto the barrier 40, above the footings 16 and the ground 18), the barrier 40 prevents adhesion between the rigid diaphragm 12 and the footing 18 and/or the ground 18 while the concrete cures. The barrier 40 may be a tarp 40′ (
Regardless of the type(s) of barrier used, the present invention allows the rigid diaphragm 12 to be advantageously formed in situ. That is, the rigid diaphragm 12 is formed above the footing 16 and a relatively minimal distance below its final elevation in the completed structure, where the ground 18 and the footing 16 advantageously serve as the supporting surface 38 for the rigid diaphragm 12 during its formation and curing. As such, the rigid diaphragm need not be transported from a remote location nor is temporary falsework needed to support the rigid diaphragm while it cures, which minimizes disruption to construction schedules and limits additional construction costs.
Many variables affect the length of time a concrete slab needs to cure and the length of time during which curing can be expected. Some of the more common variables include cement—water mix ratio, cement-sand ratio, particle size distribution, presence of accelerators, curing compounds, environmental conditions, location of vapor membrane, and exposure to water during curing. Notwithstanding these numerous factors, a typical period for the concrete to cure may be a minimum of 28 days under normal conditions. However, in accordance with the present invention, construction of the structure S on the rigid diaphragm 12 can begin as soon as about one day after pouring of the concrete of the rigid diaphragm 12 so long as the concrete of the rigid diaphragm has reached sufficient strength to support the load of such construction.
In keeping with the present invention, construction of the structure S on the rigid diaphragm 12 can begin before the rigid diaphragm has reached its designated or allowable strength (which includes not only the strength to support the load of such construction and other vertical and horizontal loads, but to withstand carrying such loads “on points”, that is to be supported at localized areas only, for example, only by its corners and edge regions). With conventional rigid diaphragms such as those that are formed at another location, such rigid diaphragms are generally not transported until they can withstand at least the stress and strain of being lifted and moved. Moreover, such rigid diaphragms are typically not placed on “points” until well into their curing period.
In contrast, the rigid diaphragm 12 of the present invention need not be transported from a remote location (and therefore avoids the delay in waiting for the concrete to cure sufficiently to be able to endure such transport), and construction of the structure S can begin well before the rigid diaphragm 12 reaches its designated or allowable strength. Accordingly, construction of the vertical walls 32 or other structures above the rigid diaphragm may begin generally after about one day after pouring of the concrete of the rigid diaphragm 12, so long as the concrete has cured to sufficient strength to carry the load of such construction. Moreover, construction of the structure S may continue on the rigid diaphragm 12 while the rigid diaphragm 12 cures to its designed or allowable strength, which may take about 28 days or more. In accordance with the present invention, the surface 38 supporting the rigid diaphragm enables such early construction.
After the rigid diaphragm 12 has reached its designed or allowable strength, for example, about 28 days or so, but typically before construction of the structure S is completed, lifting devices 42 are used to elevate (elevate, raise and lift, used interchangeably herein) the rigid diaphragm for installation of the BIDs 14 between the footings 16 and the rigid diaphragm 12. Hydraulic or mechanical lifting devices are known, particularly those used to lift structures and buildings. Suitable systems, including the Synchronous Lifting Systems 4-to-64 Point, are available from Enerpac Hydraulic Technology (Milwaukee, Wis.). Use of the barrier 40 between at least the rigid diaphragm 12 and the footing 16 allows the rigid diaphragm 12 to be readily separated from the footings 16 and lifted by such hydraulic or mechanical lifting devices.
To lift the rigid diaphragm, the lifting devices 42 are placed under the rigid diaphragm 12 generally around its corner and edge regions 30 and 31, as shown in
Before the barrier 40 is placed on the footing 16c and construction of the rigid diaphragm 12, the cavity 63c may be occupied by a filler element 70c (e.g., a wooden, styrofoam or plywood block) to support the barrier and the rigid diaphragm and/or to act as a barrier (if its material is suitably nonadhesive to concrete) and prevent concrete from the rigid diaphragm from entering or settling in the cavity. If the barrier 40 is plywood or a steel plate that is sufficiently rigid to support the rigid diaphragm, the filler element 70c may be unnecessary. But if the barrier is nonrigid, such as a tarp, the filler element 70c should be placed inside the cavity 63c to occupy it and to support the barrier and the rigid diaphragm.
As shown in
As an alternative to the recessed formations 60 in the footings,
As shown in
When the BIDs 14 have been properly installed such that the rigid diaphragm 12 is supported on points by the BIDs as shown in
Accordingly, the construction of
An alternative embodiment of a structure S' built in accordance with the present invention is shown in
The preceding description has been presented with reference to presently preferred embodiments of the invention. Workers skilled in the art and technology to which this invention pertains will appreciate that alterations and changes to the described structure may be practiced without meaningfully departing from the principal, spirit and scope of this invention. Moreover, the drawings may not be to scale. Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and illustrated in the accompanying drawings, but rather should be read consistent with and as support for the following claims which are to have their fullest and fairest scope.