1. Field of the Invention
The present invention relates to control of combustion engines, particularly combustion engines equipped with double supercharging.
2. Description of the Prior Art
The supercharging of an engine increases the quantity of air and fuel mixture within the cylinders of the engine in comparison with normal operation. Supercharging, and especially double supercharging, make it possible to increase the efficiency of a combustion engine without changing the rotational speed. This is because engine torque (and therefore power) is dependent on the angle formed between the connecting rod and the crankshaft, on the pressure of the gases inside the cylinder, referred to as the Mean Effective Pressure (or MEP) and on the pressure of the amount of fuel introduced. For example, for a gasoline engine, if the amount of gasoline introduced into the cylinder is increased, then the mass of air (oxidizer) must also be increased proportionately in order to ensure complete combustion of this fuel (the same air/fuel ratio is maintained).
In order to obtain this supercharging, the mass of gas on the intake side is increased, making it possible to increase the quantity of fuel. In order to do that, the gaseous mixture on the intake side of the engine (essentially comprising air and optionally burnt gases) is compressed. This compression may be performed by the compressor of a turbocharger driven by the exhaust gases by a turbine, or compression may be performed by a separate mechanical compressor which may be driven by the engine crankshaft. Double supercharging is referred to when the gaseous mixture on the intake side is compressed twice: for example, a first time by a compressor of the turbocharger and a second time by a mechanical compressor located in the engine intake circuit. Conventionally, the mechanical compressor, which is dynamically controlled, compensates for the inertia of the turbocharger.
In order to control the pressure of the air on the intake side, referred to as the boost pressure, it is possible to alter the way in which the two compressors behave. On the one hand, in order to control the air passing through the mechanical compressor, a bypass valve is controlled, which is positioned in parallel with the compressor and diverts the air toward the compressor according to its openness, which is controlled. Furthermore, when the compressor is driven by the engine crankshaft, a controlled clutch is inserted between a reduction gear and the mechanical compressor. The clutch allows the mechanical compressor to be activated or deactivated. Conventionally, the mechanical compressor is deactivated for high engine speeds (the limiting speed is dependent on the drive ratio between the crankshaft and the mechanical compressor). On the other hand, in order to control the compression of air by the turbocharger the turbocharger is equipped with a variable geometry turbine (VGT) having controlled variation of its geometry which leads to a change in the rotational speed of the turbocharger and therefore a change in the compression.
At steady speeds, a mechanical compressor appears very costly from an energy standpoint when connected directly to the crankshaft. Doing this results in an increase in engine fuel consumption.
From a transient standpoint, it would appear that the boost pressure is the result of two parameters controlled by the VGT turbine and the bypass valve, which are: the pressure downstream of the turbocharger (that is upstream of the mechanical compressor) and the compression ratio of the mechanical compressor. These two parameters have different response times as a result of the pressure upstream of the mechanical compressor is slow in comparison with the compression ratio of the mechanical compressor because of the inertia of the turbocharger. Control of the double supercharging needs to operate the two components in such a way as to ensure rapid response.
A method for controlling the double supercharging must therefore meet the following three objectives:
Patent EP 1 844 222 B1 describes a combustion engine equipped with double supercharging and a method for controlling the double supercharging. The engine described in that document comprises an additional controlled valve between the turbocharger and the mechanical compressor, making the system more complex to produce and to control (because the number of actuators to be controlled is higher). Furthermore, the control method described in that document does not take the physical behavior of the gas flow rates on the intake side into consideration.
In order to respond to these problems, the invention relates to a method for controlling a combustion engine equipped with double supercharging, in which the bypass valve is controlled by determining an opening setpoint for the bypass valve using a filling model that models the filling of the supercharging boost volume. The model allows the physical behavior of the gas flow rates on the intake side to be taken into consideration. In addition, the open setpoint of the bypass valve allows the double supercharging to be controlled rapidly, robustly and in a way that is optimal in relation to energy.
The invention relates to a method for controlling a combustion engine equipped with a supercharging system, comprising a turbocharger and a mechanical compressor for compressing a gaseous mixture on the intake side of the engine and a bypass circuit arranged in parallel with the mechanical compressor comprising a controlled bypass valve. For this method, the following steps are carried out:
According to the invention, a pressure Pavcm and a temperature Tavcm upstream of the mechanical compressor and a boost pressure Psural and boost temperature Tsural on the intake side of the engine, the filling model that models the filling of the supercharging boost volume linking the boost pressure Psural to the openness Bypass of the bypass valve by the pressure Pavcm and the temperature Tavcm upstream of the mechanical compressor as well as the boost temperature Tsural are determined.
Advantageously, the boost pressure Psural and boost temperature Tsural are determined by respective pressure and temperature sensors arranged upstream of the intake manifold of the engine.
According to one embodiment of the invention, the pressure Pavcm and the temperature Tavcm upstream of the said mechanical compressor are determined by the respective pressure and temperature sensors located upstream of the mechanical compressor.
As an alternative, the pressure Pavcm and the temperature Tavcm upstream of the mechanical compressor are determined by an estimator dependent on the boost pressure Psural and boost temperature Tsural.
Furthermore, the mechanical compressor is driven by the crankshaft of the engine by a reduction gear and a clutch) controlled as a function of the opening setpoint Bypasssp of the bypass valve.
Alternatively, the mechanical compressor is driven by an electric motor.
Advantageously, the clutch is controlled by carrying out the following steps:
Advantageously, the predetermined threshold is determined as a function of the maximum speed of the mechanical compressor and the reduction ratio rcm between the crankshaft and the mechanical compressor.
According to the invention, the filling model is determined by a filling equation regarding the filling of the supercharging boost volume defined by a conservation-of-flow rates formula as follows:
where {dot over (P)}sural is the first derivative of the boost pressure Psural with respect to time, R is the perfect gas constant, Vsural is the supercharging boost volume, Dcm is the flow rate arriving from the mechanical compressor, Dbp is the flow rate leaving through the bypass valve which is a function of the openness of the bypass valve and Dasp is the aspirated flow rate leaving toward the cylinders of the engine.
For preference, the flow rate Dbp leaving through the bypass valve (4) is determined by a pressure drop relationship at the bypass valve (4), notably by a Barré Saint Venant equation written as follows: Dbp=Abp (Bypass)×f(Pavcm,Psural,Tavcm) where Λbp is the area of opening of the bypass valve and f is the flow rate per unit area defined by a formula of the type:
where γ is a ratio of mass heat capacities of the gases.
According to one embodiment of the invention, the filling model is an open-loop filling model which can be written in the form of a relationship as follows:
where rcm is the reduction ratio between the mechanical compressor and the crankshaft, ρcm is the density of the gases passing through the mechanical compressor as given by
φ is the volumetric now rate of the mechanical compressor, Daspsp is the setpoint for the flow rate of gas aspirated by the cylinders of the said engine, and δP is the pressure drop in an air cooler located between the turbocharger and the mechanical compressor.
Alternatively, the filling model is a closed-loop filling model which can be written in the form of a relationship as follows:
where δPl=−KP(Psural−Psuralsp)−Ki∫0t(Psural−Psuralsp)dt, rcm is a reduction ratio between the mechanical compressor and the crankshaft, ρcm is the density of the gases passing through the mechanical compressor as given by
φ is the volumetric now rate of the mechanical compressor, Daspsp is the setpoint for the flow rate of gas aspirated by the cylinders of the engine, δP is the pressure drop in an air cooler sited between the turbocharger and the mechanical compressor, and Ki and Kp are calibration parameters for the feedback loop.
Other features and advantages of the method according to the invention will become apparent from reading the description hereinafter of nonlimiting embodiments, with reference to the attached figures described hereinafter.
a) to 4c) illustrate the boost pressure, the opening of the bypass valve and the opening of the VGT turbine for open-loop control according to one embodiment of the method according to the invention for an engine speed of 1000 rpm.
a) to 5c) illustrate the boost pressure, the opening of the bypass valve and the opening of the VGT turbine for open-loop control according to one embodiment of the method according to the invention for an engine speed of 2500 rpm.
a) to 6c) illustrate the boost pressure, the opening of the bypass valve and the opening of the VGT turbine for open-loop control according to one embodiment of the method according to the invention for various engine speeds: 1000, 1500, 2000, 2500 and 3000 rpm.
a) to 7d) illustrate the boost pressure, the opening of the bypass valve, the opening of the VGT turbine and the mean effective pressure (MEP) for open-loop control according to one embodiment of the method according to the invention for various engine speeds: 1000, 1500, 2000, 2500 and 3000 rpm with variations in atmospheric pressure.
a) to 8d) illustrate the boost pressure, the opening of the bypass valve, the opening of the VGT turbine and the mean effective pressure (MEP) for open-loop control according to one embodiment of the method according to the invention for various engine speeds: 1000, 1500, 2000, 2500 and 3000 rpm with variations in atmospheric temperature.
a) to 9d) illustrate the boost pressure, the opening of the bypass valve, the opening of the VGT turbine and the mean effective pressure (MEP) for open-loop control according to one embodiment of the method according to the invention for various engine speeds: 1000, 1500, 2000, 2500 and 3000 rpm with variations in quantity of fuel injected.
a) to 10c) illustrate the boost pressure, the opening of the bypass valve and of the VGT turbine (in the same figure) and the mean effective pressure (MEP) for open-loop control according to one embodiment of the method according to the invention for various engine speeds: 1000, 1500, 2000, 2500 and 3000 rpm taking into account spread on the sensors and components of the supercharging system.
a) and 11b) depict the absolute value of the static error in boost pressure over 1000 dispersed tests for open-loop control according to one embodiment of the invention.
a) to 12c) correspond to
a) to 13c) correspond to
a) and 14b) correspond to
a) to 15c) respectively illustrate the engine speed, the boost pressure and the positions of the actuators for a full load from 1000 rpm.
a) and 16b) illustrate the boost pressure and the acceleration of the vehicle at full load from 1000 rpm for various gearbox ratios.
a) to 17c) correspond to
a) and 18b) correspond to
The method according to the invention allows control of an engine provided with double supercharging comprising a compressor of a turbocharger and a mechanical compressor mounted in parallel with a bypass valve.
In addition, as depicted, the engine may comprise an exhaust gas recirculation (EGR) circuit (8) comprising a cooler (10) and an EGR valve (9). The circulating burnt gases mix with the fresh air between the air filter (7) and the compressor of the turbocharger (2). The engine (1) as depicted comprises four cylinders. These last two features (EGR and number of cylinders) are independent of the control method according to the invention and are nonlimiting.
The method according to the invention is also suited to a combustion engine provided with a double supercharging for which the mechanical compressor is driven for example by an electric motor.
The method according to the invention relates to the control of a combustion engine equipped with double supercharging. To control the combustion engine, the following steps are carried out:
1) Determining the pressures and temperatures within the intake circuit.
2) Acquiring a boost pressure setpoint.
3) Providing a filling model.
4) Calculating the opening setpoint for the bypass valve.
5) Controlling the bypass valve.
6) Activating the mechanical compressor.
The last step of activating the mechanical compressor is an optional step which is used only if the mechanical compressor is driven by the engine crankshaft by a clutch.
The terms upstream and downstream are defined with respect to the direction in which the gases flow on the intake side and on the exhaust side. In addition, the following notations are used:
Notations, with the suffix—sp, represent setpoints associated with the parameters concerned; the suffix—mes indicates measured values; the suffix—nom indicates nominal values; and the suffix—disp corresponds to values with spread. The first derivative with respect to time is indicated by a dot above the variable concerned.
In the remainder of the description and for
Step 1) Determining the Pressures and Temperatures within the Intake Circuit
In order to control the supercharging and notably the opening of the bypass valve, the method according to the invention requires knowledge of physical parameters within the intake circuit. These are the pressure Pavcm and temperature Tavcm upstream of the mechanical compressor (3) and the boost pressure Psural and temperature Tsural on the intake side of the said engine (1).
These physical parameters can be measured by pressure and temperature sensors or can be determined by an estimator.
According to one embodiment illustrated in
Alternatively, only a boost pressure Psural and boost temperature Tsural at the outlet of the second charge air cooler (5) are measured and a pressure Pavcm and a temperature Tavcm are determined by an estimator. For example, in order to estimate the pressure Pavcm an estimator is used based on a dynamic model in the volume upstream of the mechanical compressor that involves the law of conservation of flow rates. In order to determine the temperature Tavcm, a map of the charge air cooler (6) and the estimated pressure Pavcm is utilized.
A boost pressure setpoint Psuralsp is acquired that allows the behavior (torque) demanded from the engine to be achieved. This setpoint is given by the stage above in the engine control. It is usually mapped as a function of the setpoint for MIP (mean indicated pressure which is the mean specific pressure over the surface of the piston during a double compression-expansion stroke) and of the engine speed.
A filling model regarding the filling of the supercharging boost volume is provided. The supercharging boost volume is delimited on the one hand by the intake valves of the engine and on the other hand by the mechanical compressor (3) and the bypass valve (4). The filling model links the boost pressure Psural to the opening Bypass of the bypass valve (4) from the pressure Pavcm and of the temperature Tavcm upstream of the mechanical compressor (3) and the boost temperature Tsural. The filling model interprets the filling of the supercharging boost volume and takes the physical phenomena involved in this filling into consideration.
According to one embodiment of the invention, the evolution in the pressure downstream of the mechanical compressor is governed by the dynamics of the filling of the volume sited upstream of the valves. These dynamics can be written in the form of a formula:
D
bp
=A
bp(Bypass)·f(Pavcm,Psural,Tavcm)
P
avcm
=P
sural
+δP(rcm×Ne,ρcm),
By substituting the expression of the three flow rates into the first relationship, the boost pressure dynamics can be expressed in the form of a formula of the type:
where Bypass and Psural represent the control and the output of the system to be controlled. This relationship constitutes a filling model for the filling of the supercharging boost volume.
The opening setpoint Bypasssp for the bypass valve (4) is determined by the filling model determined in the previous step and of the boost pressure setpoint Psuralsp.
According to the embodiment described in the previous step, in order to determine the opening setpoint Bypasssp of the bypass valve (4), the relationship obtained is inverted and applied to the boost pressure setpoint Psuralsp, providing a formula:
This control law is therefore slightly modified. The boost pressure Psural and the aspirated flow rate Dasp are replaced by their setpoints. The aspirated flow rate setpoint may be given directly by the stage above in the engine control or may be determined by the filling model for the filling of the engine in which model the boost pressure setpoint is considered. For example, the model may be written Daspsp is a function of (Psuralsp,Tsural,Ne). This increases the robustness of the control law. In open loop, the calculation for the opening setpoint Bypasssp of the bypass valve can be written in the form of a relationship:
The dynamic term {dot over (P)}suralsp here allows a transient acceleration function to be performed.
Once the opening setpoint Bypasssp of the bypass valve (4) has been determined, the setpoint is applied to the bypass valve (4) to achieve the expected boost pressure setpoint Psuralsp. In this way, the desired engine load is obtained.
When the mechanical compressor (3) is driven by the combustion engine (1), a clutch (11) is inserted between a reduction gear and the compressor (3). Control of this clutch (11) provides activation and deactivation of the compressor (3): specifically, this is generally an “on/off” command. The clutch (11) is closed in the zone of use of the mechanical compressor (zones Z2 and Z3 in
When the mechanical compressor (3) is driven by an electric motor, control of the electric motor provides activation and deactivation of the compressor (3) to comply with the zones of operation illustrated in
The method according to the invention is suited to the control of combustion engines, notably for vehicles and more particularly automobiles. The combustion engine concerned may be a gasoline engine or a diesel engine.
According to an alternative form of embodiment of the invention, a control loop is used to determine the opening setpoint Bypasssp of the bypass valve, and this is then referred to as closed-loop control. That makes it possible to reduce the static error between the measured boost pressure and its setpoint.
In order to achieve this objective, the goal is to force the plot of boost pressure Psural to follow the plot of its setpoint Psuralsp, with a relationship: {dot over (P)}sural−{dot over (P)}suralsp=−KP(Psural−Psuralsp)−Ki∫0i(Psural−Psuralsp)dt being imposed. The gains Kp and Ki are calibration parameters. Given the structure of the controller, these gains are constant, valid throughout the operating range, which allow the non-linearity of the system to be taken into consideration.
This correction reveals a proportional term and an integral term of the error. The dynamics are inverted thereafter exactly as in step 4) of calculating the opening setpoint Bypasssp for the bypass valve. Closed loop control relationship is used:
is thus obtained, where δPl=−KP(Psural−Psuralsp)−Ki∫0i(Psural−Psuralsp)dt.
Advantageously, the looping (or “feedback”) term is extracted from the multiplicative factor RTsural/Vsural. Because this ratio is nearly constant, it is included in the values of the calibration parameters Kp and Ki.
According to a second alternative form of embodiment of the invention, the variable geometry turbocharger VGT (2) can be controlled using a setpoint determined with a map of the turbocharger (2).
In order to verify the behavior of the combustion engine with the method according to the invention, simulations are carried out for open-loop control and closed-loop control for the combustion engine instrumented according to
a) to 4c) depict an increase in load for an engine speed of 1000 rpm (zone Z2 in
The opening of the VGT turbocharger (2) is positioned by a map plus a proportional term on the boost pressure error and the VGT closes at the start of the transient phase. The bypass valve (4) closes to a great extent and then reopens to return to a constant opening position in the steady state. The significant closure of the bypass valve has the effect of speeding up the boost pressure response by compensating for the turbo lag.
a) to 5c) correspond to
a) to 6c) show increases in torque for various speeds: 1000, 1500, 2000, 2500 and 3000 rpm. The figures respectively depict the boost pressure Psural (and the pressure upstream of the mechanical compressor), the position of the bypass valve Bypass and the position of the VGT.
The first three increases in load (at 1000, 1500 and 2000 rpm) fall within the zone of use of the mechanical compressor (zone Z2 in
The next two increases in load (at 2500 and 3000 rpm) fall within the zone in which, in the steady state, it is preferable not to engage the mechanical compressor (zone Z3 of
The robustness of the control method with respect to atmospheric conditions (variations in atmospheric pressure and in atmospheric temperature) and with respect to the quantity of fuel injected are then verified.
a) to 7d) and 8a) to 8d) show loading transients for various speeds: 1000, 1500, 2000, 2500 and 3000 rpm. A number of scenarios are therefore compared: 813, 913, 1013 and 1113 mbar for variations in atmospheric pressure(
a) and 8a) depict the boost pressure. It may be seen that pressure tracking in the various cases is good. At 1000 rpm, the transient is slower for the low pressures because of the saturation of the bypass actuator (4).
b), 7c) and 8b), 8c) show the position of the actuators. It may be clearly seen here that the open-loop strategy modifies the position of the bypass valve (4) to satisfy the boost pressure. In this way, the strategy addresses the need to use corrective maps as a function of atmospheric conditions.
d) and 8d) give the mean effective pressure (MEP). It is seen here that the open-loop strategy makes possible maintaining the same responsiveness when the atmospheric conditions change. The term responsiveness is a technical term in the automotive field which qualifies the driving performance/feel of a vehicle during the full load phase. For example, a supercharged engine will suffer with responsiveness less than a naturally aspirated engine for the same power.
The influence that the variation in the quantity of fuel injected has on the control of the double supercharging is studied.
a) shows the boost pressure
b) and 9c) show the position of the actuators. It can be clearly seen here again that the open-loop control modifies the position of the bypass valve (4) in such a way as to satisfy the boost pressure. Specifically, the variation in injection conditions has a high impact on the exhaust pressure and therefore on the operation of the turbocharger (2). The control of the double supercharging automatically compensates for this loss of performance of the turbocharger (2) by closing the bypass valve to a greater or lesser extent.
d) gives the mean effective pressure (MEP). Here, the impact that the variations in the quantity of fuel injected have on the production of torque can be clearly seen.
In the light of
The robustness of the control method with respect to spread on the various sensors and systems is then verified. The spread is intended to simulate a difference between vehicles as they leave the factory. A sample size of 1000 vehicles is considered. The spread follows a Gaussian distribution.
The spread on the sensors is as follows:
The spread on the components of the supercharging system is as follows:
a) to 10c) show the same load transients at various speeds as
It will be noted first of all that the boost pressure transient is not very affected by the presence of the spread. The static error obtained is likewise also limited to around 100 mbar.
b) shows that the plot of the position of the actuators changing greatly with spread, notably at higher speeds. This can be explained by the fact that, at high speed, the pressure difference across the bypass valve (4) is smaller. An error in the measurement of the pressures upstream and downstream of this valve will therefore introduce a large modification into the prepositioning of the bypass valve (4). However, it is important to note that this modification to the position of the actuators has no impact on the output of the system which is the boost pressure.
c) shows the MEP response which appears to be only relatively slightly affected by the spread applied, of the order of 1 bar (according to whether or not the mechanical compressor is disengaged at the end of the transient).
a) and 11b) show the response time Tr at 95% and the value of the boost pressure overshoot D corresponding to the results of
a) to 12c) show applications of torque for various speeds: 1000, 1500, 2000, 2500 and 3000 rpm for closed-loop control. The figures respectively depict the boost pressure (
These results are to be compared with those of
The same spread as for the simulations of
These results are to be compared with those of
a) and 14b) give the response time Tr at 95% and the boost pressure overshoot D on the thousand dispersed tests with spread. For each engine speed, the horizontal lines of the rectangle define the second quartile, the median and the third quartile. The lines outside the rectangle represent the interval at three sigma (99.7% of the points are within the interval). The points defined by crosses are marginal points.
It should be noted that the response time Tr varies very little from one speed to another, between 700 ms and 1100 ms. Here the full benefit of the use of the mechanical compressor (3) in the transient phase can be seen. The robustness of the control is also evidenced by the small variance in response time Tr in the system subjected to spread.
b) shows the boost pressure overshoot D. Here it is seen that the boost pressure overshoot is constant over the entire range of speeds and that its maximum value does not exceed 150 mbar.
In the light of these results, the control method according to the invention, whether in open loop or in closed loop, is indeed robust with regard to a spread originating from the sensors and/or components of the supercharging system.
A validation on transients of a vehicle is carried out in order to verify the performance of the method for controlling the double supercharging. To do that, a model of a vehicle (of the family car type) was developed.
The results which follow give the results of foot-hard-down simulations for various gear ratios and various starting speeds. Open throttle is the name given to a strong demand for torque corresponding to the accelerator pedal being fully depressed. These simulations are carried out using the closed-loop control.
a) to 15c) show an open throttle for BV3 (3rd gear) at 1000 rpm. In each of the three figures, the vertical dotted line indicates the moment at which the engine speed exceeds 3000 rpm, that is the speed beyond which the mechanical compressor (3) has to be disengaged.
a) shows the change in engine speed Ne.
b) shows the setpoint boost pressure and the measured boost pressure. It is seen here that the pressure transient is rapid and occurs a fair distance away from the zone demarcating the limit of use of the mechanical compressor (3).
c) gives the position of the actuators which are the bypass valve (4), the VGT (2) and the clutch (11) of the mechanical compressor. It may be seen that at the start of the transient, the compressor (3) is engaged, the bypass valve (4) closes to obtain the required boost pressure and the VGT (2) closes. After a certain time, the bypass valve (4) reopens and the mechanical compressor (3) is disengaged which becomes superfluous because the turbocharger (2) is capable on its own of achieving the boost pressure demanded.
a) and 16b) give the performance obtained in all gear ratios with foot-hard-down at 1000 rpm.
a) depicts the setpoint boost pressure (in dotted line) and measured boost pressure (in solid line). It may be seen that the dynamics of the responses are similar for all gear ratios. The final value changes because the setpoint boost pressure Psuralsp (full load) changes as a function of engine speed.
b) shows the corresponding vehicle acceleration for each of the gear ratios. Here too it may be seen that the acceleration is fairly rapid for all gear ratios.
a) to 17c) show a full throttle in BV3 (3rd gear) at 2500 rpm. In each of the three figures, the vertical dotted line indicates the moment at which the speed exceeds 3000 rpm, which is the speed beyond which the mechanical compressor (3) has to be disengaged.
a) gives the evolution in engine speed.
c) gives the position of the actuators which are the bypass valve (4), the VGT (2) and the clutch (11) of the mechanical compressor (3). It is seen that at the start of the transient, the compressor (3) is engaged, the bypass valve (4) closes to obtain the required boost pressure and the VGT (2) closes. After a certain length of time, the bypass valve (4) reopens and the mechanical compressor (3) is disengaged, the latter having become superfluous because the turbocharger (2) is capable on its own of achieving the boost pressure demanded.
The transients at 2500 rpm do not require the use of the mechanical compressor (3) to achieve full load, as the latter can be provided by the turbocharger (2) alone. However, the control according to the invention does allow the mechanical compressor to be used in the transient phases in order to accelerate the boost pressure dynamics.
a) shows the boost pressure measurement and
Number | Date | Country | Kind |
---|---|---|---|
12/02420 | Sep 2012 | FR | national |
Reference is made to French Patent Application Serial No. 12/02420, filed on Sep. 11, 2012 and PCT/FR2013/051928, filed Aug. 12, 2013, which applications are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2013/051928 | 8/12/2013 | WO | 00 |