The present invention relates generally to a method and means of generating a range of petroleum products from bitumen or heavy oil reservoir and specifically to the in situ generation of the products from bitumen or heavy oil.
Oil is a nonrenewable natural resource having great importance to the industrialized world. The increased demand for and decreasing supplies of conventional oil has led to the development of alternate sources of oil such as deposits of bitumen and heavy crude as well as a search for more efficient methods for recovery and processing from such hydrocarbon deposits.
There are substantial deposits of oil sands in the world with particularly large deposits in Canada and Venezuela. For example, the Athabasca oil sands region of the Western Canadian Sedimentary Basin contains an estimated 1.3 trillion bbls of potentially recoverable bitumen. An equally large deposit of bitumen may also be found in the Carbonates of Alberta. There are lesser, but significant deposits, found in the U.S. and other countries. These oil sands and carbonate reservoirs contain a petroleum substance called bitumen or heavy oil. Bitumen deposits cannot be economically exploited by traditional oil well technology because the bitumen or heavy oil is too viscous to flow at natural reservoir temperatures.
When oil sand deposits are near the surface, they can be economically recovered by surface mining methods. For example, surface mining of shallower deposits in the Alberta oil sands is currently accomplished by large power shovels and trucks to feed a primary bitumen extraction facility, which, in turn, feeds an upgrader facility where it is refined and converted into crude oil and other petroleum products.
When oil sand deposits are too far below the surface for economic recovery by surface mining, bitumen can be economically recovered in many, but not all, areas by recently developed in-situ recovery methods, such as Steam Assisted Gravity Drain (“SAGD”) or other variants, and combinations of gravity drain technology, such as Heat Assisted Gravity Drain (“HAGD”) and VAPEX, which can mobilize the bitumen or heavy oil. The principal method currently being implemented on a large scale is Steam Assisted Gravity Drain (“SAGD”). Typically, SAGD wells or well pairs are drilled from the earth's surface down to the bottom of the oil sand deposit and then horizontally along the bottom of the deposit. The wells or well pairs are then used to inject steam and collect mobilized bitumen.
Horizontal and/or vertical wells may also be installed and operated from an underground workspace, such as described for example in U.S. patent application Ser. No. 11/441,929 (US Patent Application Publication Number 2007-0044957), entitled “Method for Underground Recovery of Hydrocarbons”, and U.S. patent application Ser. No. 11/737,578 (US Patent Application Publication Number 2008-0017416), entitled “Method of Drilling from a Shaft”, which are incorporated herein by reference. These horizontal and/or vertical wells may also be operated as HAGD wells, such as described, for example, in U.S. patent application Ser. No. 12/327,547 (US Patent Application Publication Number 2009-0139716), entitled “Method of Recovering Bitumen from Tunnel and Shaft with Electrodes, Heating Elements and Recovery Wells”, which is incorporated herein by reference.
HAGD is a relatively new process for mobilizing bitumen in the Alberta oil sands or carbonates. Electric heater elements are embedded in the reservoir material and used, in place of steam, to heat the formation until the bitumen becomes fluid enough to flow by gravity drainage. HAGD may require more energy than SAGD but may be used in reservoirs where SAGD cannot such, as for example, reservoirs with poor steam caps. HAGD and SAGD may also be used in combination where HAGD elements are used to melt the bitumen around the steam injectors, which allows the steam chamber to form more quickly. An exemplary means of producing bitumen or heavy oil is described in U.S. Pat. No. 7,066,254 to Vinegar, et al. entitled “In Situ Thermal Processing of a Tar Sands Formation”, which is incorporated herein by reference.
In most thermal recovery operations, 6 to 10 API bitumen is the principal petroleum product recovered. Typically, this bitumen must be de-sulfurized and upgraded to about to about 32 to 36 API to produce a marketable low sulfur crude comparable to West Texas intermediate.
Even the most efficient SAGD or HAGD operation requires substantial amounts of energy to deliver the required amount of steam or heat to the reservoir to mobilize the bitumen. If this energy is obtained by burning fossil fuels, there is the potential to generate significant amounts of carbon dioxide emissions during recovery operations. In an exemplary SAGD operation having an average Steam-Oil-Ratio (“SOR”) of 3, the energy required to produce high quality steam to recover 1 barrel of heavy oil or bitumen oil is equivalent to about ¼ of a barrel of oil (the SOR is determined by the number of barrels of water required to produce the steam divided by the number of barrels of oil or bitumen recovered). Thus, oil produced by thermal recovery methods has the potential to generate 25% or more carbon dioxide emissions than oil recovered by pumping from conventional oil wells.
In addition, the upgrading process when carried out underground, such as described for example in U.S. Pat. No. 7,066,254 or at a surface refinery can generate additional carbon dioxide and other unwanted emissions.
Because of global warming concerns, this potential for substantially increasing carbon dioxide emissions may outweigh the economic and other advantages of producing the enormous reserves of unconventional hydrocarbon deposits available.
There remains, therefore, a need for a method for a controllable recovery process that can accomplish a significant amount of in-situ upgrading of bitumen after it has been mobilized within the producing reservoir, and this need includes a method that substantially reduces or eliminates unwanted emissions, principally carbon dioxide emissions.
These and other needs are addressed by the present invention. The various embodiments and configurations of the present invention are directed generally to a controlled application of reservoir temporal and spatial temperature profiles not only to recover hydrocarbons but also to convert in situ hydrocarbons into a number of desirable products, such as asphaltenes, jet fuel, diesel fuel, and heavy vacuum gas oil.
In a first embodiment, a method includes the steps:
(a) providing a plurality of mobilizing wells for mobilizing hydrocarbons and a plurality of recovery wells to recover mobilized hydrocarbons, the mobilizing and recovery wells defining a portion of an underground deposit, the defined portion comprising solid, liquid and gaseous hydrocarbons, wherein at least some of the mobilizing wells and/or recovery wells extend from an underground manned excavation;
(b) for a selected time interval, mobilizing, by the mobilizing wells, hydrocarbons from the defined portion while removing hydrocarbons from the defined portion, wherein, during mobilization, the defined portion is at a first temperature of no more than about 350° C.;
(c) after a selected time interval, heating a first zone of the defined portion of the deposit to a temperature above 350° C. and sufficient to convert at least a portion of the remaining solid and/or liquid hydrocarbons into at least one of asphaltenes, jet fuel, diesel fuel, and heavy vacuum gas oil; and
(d) removing the at least one of asphaltenes, jet fuel, diesel fuel, heavy vacuum gas oil and gaseous hydrocarbons from the underground deposit.
In a second embodiment, a method includes the steps:
(a) providing a plurality of mobilizing wells comprising at least one of steam injectors, diluent injectors, and heating elements for mobilizing and mobilizing hydrocarbons, a plurality of heating wells to thermally heat and crack hydrocarbons into desired products, and a plurality of recovery wells to recover mobilized hydrocarbons and products derived therefrom, the mobilizing, heating, and recovery wells being positioned in a selected portion of an underground deposit, the selected portion comprising liquid and gaseous hydrocarbons, wherein at least some of the mobilizing wells, heating wells, and/or recovery wells extend from an underground manned excavation;
(b) for a selected time interval, mobilizing, by the plurality of mobilizing wells, hydrocarbons in the selected portion and removing hydrocarbons from the selected portion, wherein the selected portion is at a first temperature of no more than about 350° C.;
(c) after a selected amount of hydrocarbons are removed from the selected portion, heating, by the heating wells, a first zone of the selected portion of the deposit to a temperature above 350° C. and sufficient to convert at least a portion of the liquid hydrocarbons remaining in the selected portion into at least one of asphaltenes, jet fuel, diesel fuel, and heavy vacuum gas oil; and
(d) removing the at least one of asphaltenes, jet fuel, diesel fuel, and heavy vacuum gas oil from the selected portion of the underground deposit.
In a third embodiment, a system includes:
mobilizing well means for mobilizing, for a selected time interval, a selected portion of an underground hydrocarbon-containing deposit to a first temperature of no more than about 350° C.;
recovery well means for removing a selected amount of hydrocarbons from the selected portion; and
heating well means for heating a first zone of the selected portion of the deposit to a temperature above 350° C. and sufficient to convert at least a portion of the liquid hydrocarbons remaining in the selected portion into asphaltenes, at least one of jet fuel and diesel fuel, and heavy vacuum gas oil, wherein the recovery well means removes the asphaltenes, at least one of jet fuel and diesel fuel, and heavy vacuum gas oil from the selected portion of the underground deposit and wherein at least some of the mobilizing well means and/or recovery well means extend from an underground manned excavation.
The recovery processes of the above embodiments, when operated in a preferred manner, emit no significant carbon dioxide during thermal recovery and upgrading phases of operations. Control is accomplished by installing wells for various functions from a combination of surface and underground well-head platforms. Any recovery process and system can use a combination of reservoir recovery and heating techniques based on various injector and/or heating apparatuses installed by wells into the reservoir from underground; product production wells installed from underground or from the surface; diluent and/or steam injection wells installed from underground or from the surface; gas disposal injection wells installed from underground or from the surface; gas scavenging and collection vacuum wells installed from the surface; carbon dioxide EOR injection wells installed from the surface; and water disposal wells installed from underground or from the surface. This arrangement of wells installed from the surface and underground can allow thermal control of various zones of the reservoir so that various petroleum products can be recovered directly from the reservoir. In addition, surface or underground facilities can be provided that treat recovered water; prepare and segregate various petroleum products, capture emissions especially carbon dioxide; and generate power for heating elements and steam generation with excess power being available to be sold. Thus, by effective use of surface and underground facilities, a bitumen reservoir may be operated as a recovery and partial upgrading facility, thereby substantially reducing energy expenditures and eliminating unnecessary emissions, especially carbon dioxide.
In one configuration, suitable for smaller operations, a gas turbine power plant and/or a steam power plant are used to generate electrical power and energy. In another configuration, suitable for larger operations a nuclear reactor is used to generate electrical power and energy.
The following definitions are used herein:
“At least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
A heating well as used herein is a well containing any type of heating elements or is a well capable of steam injection. That is, a heating well is any well used in thermally mobilizing an immobile hydrocarbons such, as for example, bitumen or heavy oil.
Kerogen is a mixture of organic chemical compounds that make up a portion of the organic matter in sedimentary rocks such as oil shales. When heated to the right temperatures, some types of kerogen release oil or gas.
A mobilized hydrocarbon is a hydrocarbon that has been made flowable by some means. For example, some heavy oils and bitumen may be mobilized by heating them and/or mixing them with a diluent to reduce their viscosities and allow them to flow under the prevailing drive pressure. Most liquid hydrocarbons may be mobilized by increasing the drive pressure on them, for example by water or gas floods, so that they can overcome interfacial and/or surface tensions and begin to flow.
A mobilizing well as used herein is a well whose function is to cause bitumen, heavy oil or another hydrocarbon which does not readily flow, to be mobilized and able to flow to a recovery well. A well containing heating elements is an example of a mobilizing well. A well from which steam and/or diluent may be injected into a producing formation is another example of a mobilizing well. A well that can be used to operate a combination of heating elements, steam and diluent injection either simultaneously or at different times is, in general, defined herein as a mobilizing well. A heating well is a mobilizing well. A well for injecting diluent into a reservoir is no a heating well but is a mobilizing well since the diluent injection is a cold or non-thermal process. A mobilizing well may also be converted to a recovery well.
Primary production or recovery is the first stage of hydrocarbon production, in which natural reservoir energy, such as gasdrive, waterdrive or gravity drainage, displaces hydrocarbons from the reservoir, into the wellbore and up to surface. Production using an artificial lift system, such as a rod pump, an electrical submersible pump or a gas-lift installation is considered primary recovery. Secondary production or recovery methods frequently involve an artificial-lift system and/or reservoir injection for pressure maintenance. The purpose of secondary recovery is to maintain reservoir pressure and to displace hydrocarbons toward the wellbore. Tertiary production or recovery is the third stage of hydrocarbon production during which sophisticated techniques that alter the original properties of the oil are used. Enhanced oil recovery can begin after a secondary recovery process or at any time during the productive life of an oil reservoir. Its purpose is not only to restore formation pressure, but also to improve oil displacement or fluid flow in the reservoir. The three major types of enhanced oil recovery operations are chemical flooding, miscible displacement and thermal recovery.
A recovery well is a well from which a mobilized hydrocarbon such, as for example, bitumen or heavy oil may be recovered.
A shaft is a long approximately vertical underground opening commonly having a circular cross-section that is large enough for personnel and/or large equipment. A shaft typically connects one underground level with another underground level or the ground surface.
A tunnel is a long approximately horizontal underground opening having a circular, elliptical or horseshoe-shaped cross-section that is large enough for personnel and/or vehicles. A tunnel typically connects one underground location with another.
An underground workspace as used in the present invention is any excavated opening that is effectively sealed from the formation pressure and/or fluids and has a connection to at least one entry point to the ground surface.
A well is a long underground opening commonly having a circular cross-section that is typically not large enough for personnel and/or vehicles and is commonly used to collect and transport liquids, gases or slurries from a ground formation to an accessible location and to inject liquids, gases or slurries into a ground formation from an accessible location.
Well drilling is the activity of collaring and drilling a well to a desired length or depth.
Well completion refers to any activity or operation that is used to place the drilled well in condition for production. Well completion, for example, includes the activities of open-hole well logging, casing, cementing the casing, cased hole logging, perforating the casing, measuring shut-in pressures and production rates, gas or hydraulic fracturing and other well and well bore treatments and any other commonly applied techniques to prepare a well for production.
It is to be understood that a reference to diluent herein is intended to include solvents.
It is to be understood that a reference to oil herein is intended to include low API hydrocarbons such as bitumen (API less than ˜10°) and heavy crude oils (API from ˜10° to ˜20°) as well as higher API hydrocarbons such as medium crude oils (API from ˜20° to ˜35°) and light crude oils (API higher than ˜35°). A reference to bitumen is also taken to mean a reference to low API heavy oils.
Mobilizing hydrocarbons such as bitumen or heavy oil, for example from oil sands, may be accomplished using steam to heat the bitumen or heavy oil, or by injecting diluents to increase the API rating of the bitumen or heavy oil, or by a combination of steam and diluents. Other heating methods besides steam may also be used. These include, for example:
Where any of these heating methods (besides steam) may be used, they are referred to herein generally as heating elements. When a specific type of heating method is intended, it will be referred to by its specific name (ie ohmic electrode, thermal conduction heater, induction electrode, RF antenna).
A heating well as used herein is a well containing any of the heating elements described above or is a well capable of steam injection.
A mobilizing well as used herein is a well whose function is to cause bitumen, heavy oil or another hydrocarbon, which does not readily flow, to be mobilized and able to flow to a recovery well. A heating well which contains heating elements is an example of a mobilizing well. A well from which steam or diluent may be injected into a producing formation is another example of a mobilizing well. A well that can be used to operate a combination of heating elements, steam and diluent injection either simultaneously or at different times is, in general, defined herein as a mobilizing well. A mobilizing well may also be converted to a recovery well.
A recovery well as used herein is a well from which a mobilized hydrocarbon such, as for example, bitumen or heavy oil may be recovered.
Hydrocarbon and other gases are extracted from gas scavenging wells 131 and delivered to a vacuum separator unit 106 and then compressed by compressor 107. These gases are added to other hydrocarbon gases from the FWKO 101 and sent to a Gas Refrigeration Plant 108. The temperature of Gas Refrigeration Plant 108 is kept above the boiling point of hydrogen sulphide so that only the Natural Gas Liquids (“NGLs”) remain as liquids. This process produces NGL products which are stored in a tank 109 for delivery as products or use in other on-site activities. The NGL products are typically propane C3H8, n-butane C4H10 and n-pentane C5H12. The Gas Refrigeration Plant 108 separates out most of the other gases such as, for example, methane CH4, ethane C2H6, carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulphide (H2S) and various oxides of nitrogen (“NOxs”) and sends these gases to an Amine Plant 110. The Amine Plant 110 removes most of the carbon dioxide (CO2) and hydrogen sulphide (H2S) and sends them to compressor 111 to be compressed and injected into gas disposal wells 133. Valuable and useful gases such as methane CH4 and ethane C2H6 are collected via path 153 and used for other purposes such as fuels for a combustion gas turbine 115. As is well-known, aqueous monoethanolamine (MEA), diglycolamine (DGA), diethanolamine (DEA), diisopropanolamine (DIPA) and methyldiethanolamine (MDEA) are widely used for removing most of the carbon dioxide (CO2) and hydrogen sulphide (H2S) from natural gas streams and refinery process streams. They may also be used to remove most of the CO2 from combustion gases or flue gases.
Electrical power for the facility is provided by a combustion gas turbine 115 via path 151 and a steam turbine 114 via path 152. As can be appreciated, these can be separate power plants. In
As described above, carbon dioxide and other combustion products generated in combustion turbine 115 are sent to a CO2 capture apparatus 112. The CO2 capture apparatus 112 may use a number of methods for capturing most of the CO2. The flue gases may be treated to remove particulate matter, NOxs, capture sulphur and CO2. An electrostatic precipitator process may be used to clean-up most of the particulate matter. A catalytic converter process may be used for removing most of the NOxs. Most of the sulphur may be removed by injecting, for example, limestone (CaCO4) and used to capture most of the SOx as gypsum (CaSO4) which is a saleable product. Most of the carbon dioxide may be removed and captured from the remaining flue gases by a membrane apparatus or other known processes. Some of the CO2 is captured and compressed by compressor 116 and may be sent back into the reservoir for Enhanced Oil Recovery (“EOR”) purposes via EOR injector wells 134. Nitrogen is emitted by the CO2 capture apparatus 112 via path 154. Amine from Amine Plant 110 is also sent via path 171 to the CO2 capture apparatus 112 where it recovers some CO2. This CO2-rich amine is then returned to Amine Plant 110 via path 172 where most of the carbon dioxide, any hydrogen sulphide and NOXs are removed and sent to compressor 111 to be compressed and injected into gas disposal wells 133.
An operation in the range of approximately 5,000 to 50,000 barrels per day (“bpd”) of bitumen processing is suitable for such a combustion-powered and steam plant embodiment. The power plant would typically be 120 MW for a 10,000 bpd operation. In a typical 10,000 bpd bitumen recovery operation with a Gas to Oil Ratio (“GOR”) of 2, an estimated 100 thousand standard cubic feet (“Mscf”) of gas may be recovered. This divides typically into about 80% methane and about 20% carbon dioxide.
Hydrocarbon and other gases are extracted from gas scavenging and production wells 232 and delivered to a vacuum separator unit 206 and then compressed by compressor 207. These gases are added to other hydrocarbon gases from the FWKO 201 and sent to a Gas Refrigeration Plant 208. The temperature of Gas Refrigeration Plant 208 is kept above the boiling point of hydrogen sulphide so that only the Natural Gas Liquids (“NGLs”) remain as liquids. This process produces NGL products which are stored in a tank 209 for delivery as products or use in other on-site activities. The NGL products are typically propane C3H8, n-butane C4H10 and n-pentane C5H12. The Gas Refrigeration Plant 208 separates out most of the other gases such as, for example, methane CH4, ethane C2H6, carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulphide (H2S) and NOXs and sends these gases to an Amine Plant 210. The Amine Plant 210 removes most of the carbon dioxide (CO2) and hydrogen sulphide (H2S). Valuable and useful gases such as methane CH4 and ethane C2H6 are collected via path 253 and used for other purposes such as fuels for auxiliary plant facilities or sold to a pipeline. Some of the CO2 recovered from Amine Plant 210 is captured and compressed by compressor 216 and may be sent back into the reservoir for Enhanced Oil Recovery (“EOR”) purposes via EOR injector wells 234. Most of the remaining carbon dioxide, any hydrogen sulphide and NOXs recovered from Amine Plant 210 are removed and sent to compressor 211 to be compressed and injected into gas disposal wells 233.
Electrical power for the facility is provided via path 251 by a nuclear power plant comprised of a nuclear reactor 216, a heat exchange and steam generation facility 213 and a steam turbine 214. Some of the steam generated in heat exchange and steam generation facility 213 is used to provide steam to power steam turbine 214. Most of the steam generated in heat exchange and steam generation facility 213 is sent to steam injection wells 236 where it is used in mobilizing bitumen; maintaining desired reservoir temperature; and assisting reservoir heating elements (not shown here) to raise reservoir temperature when partial upgrading is desired.
Cool water in heat exchange and steam generation facility 213 is sent via path 274 to nuclear reactor 216 where it is heated and returned via path 273 to heat exchange and steam generation facility 213 where it is used to generate steam for powering steam turbine 214. Most of the excess heat from this steam is removed by sending the steam via path 275 to, for example, a cooling tower 215. Most of the cooled steam or water is then returned to via path 276 to heat exchange and steam generation facility 213.
An operation in the range of approximately 50,000 to 200,000 barrels per day (“bpd”) of bitumen processing is suitable for such a nuclear-powered steam plant embodiment. The power plant would typically be 1,200 MW for a 100,000 bpd operation. In a typical 100,000 bpd bitumen recovery operation with a Gas to Oil Ratio (“GOR”) of 2, an estimated 1 million standard cubic feet (“Mscf”) of gas may be recovered. This divides typically into about 80% methane and about 20% carbon dioxide.
Tunnel 312 could be designed as a manned tunnel as it is isolated from the heat of the reservoir. Tunnel 311 may be unmanned after start-up of reservoir heating because of the heat of the reservoir but could be accessed under certain conditions when ventilation can be used to provide a sufficiently cool working environment for limited manned entry.
By installing wells both from the surface and from underground, it is possible to maximize production, safety and cost effectiveness and, importantly, allow better control of hydrocarbon mobilization, recovery and in-situ upgrading. When a large number of accurately located horizontal wells is required, it is more effective to install them from underground so that cost per installed horizontal well is reduced and well placement accuracy improved. This is because the wells will be shorter by a significant length because they do not have to be drilled, typically at a 45 degree angle, through the overburden. For steam injection wells, energy efficiency is improved by eliminating heat losses in the portion of the wells penetrating the overburden. Gas and water disposal wells installed from tunnels or shafts can be better serviced from underground especially if leakages are detected. Gas and water disposal piping as well as steam and hydrocarbon production piping can be routed down utility shafts where they can be serviced if necessary when safe for manned entry. Electrical cables for power and control can be routed down utility or main access shafts.
For a thermal recovery process, the formation must be heated to the approximate range of about 200° C. to about 350° C. to mobilize and recover bitumen. Then, when the desired amount of bitumen is recovered, the lower zone of the formation can be heated to about 685° C. to pyrolize and crack the remaining bitumen. The less dense hydrocarbon fractions will rise and segregate by API gravity as illustrated for example in
An example of a sectional end view is presented in
The bitumen or heavy oil reservoir may be viewed as a combined in-situ recovery and upgrading operation. Initially, the hydrocarbon-bearing formation is typically heated by various means (heating elements, steam injection, steam with diluent injection or some combination of all of these) to mobilize the bitumen or heavy oil. This preferably involves heating the lower portion of the formation to no more than about 300° C. to about 350° C. and the upper portion of the formation to no more than about 200° C. As can be appreciated the vertical temperature profile is graduated from the higher temperature of the lower portion of the reservoir to the lower temperature of the upper portion of the reservoir. During this phase of the operation, the bitumen or heavy oil is mobilized and recovery of mobilized hydrocarbon begins. The maximum temperature of about 350° C. for the reservoir during initial recovery is set such that the temperature is not high enough to initiate coking which would tend to diminish or shut off the flow of hydrocarbons. Once the reservoir is approximately about 60% to about 80% drained of hydrocarbons (the exact percentage being determined by factors such as geology, depth and the like), the temperature profile may be ramped up so as to begin transformation and production of other hydrocarbons. For example, beginning at the top of the reservoir, NGLs grading down to naphtha, jet and diesel, Heavy Vacuum Gas Oil (“HVGO”) and finally to coke resin (asphaltenes) as described above. Once the reservoir is approximately about 80% to about 90% drained of hydrocarbons, the temperature profile may be further ramped up so that a maximum temperature of about 685° C. to about 800° C. is reached in the lower portion of the reservoir grading to about 350° C. in the upper portion of the reservoir. Near the end of the process, oxygen may be injected into the bottom of the formation to increase recovery.
A configuration of an in situ process for recovering bitumen or heavy oil and various thermally generated products and byproducts is now described.
In a first stage, a specific well grid system is determined based on a combination of past experience, laboratory and core testing and reservoir simulation. The tighter the grid for heater element and steam injection wells, the greater the recovery.
In a second stage, the well grid system is established to subdivide the underground hydrocarbon deposit into a plurality of portions. Underground shaft and tunnel complexes are developed for installation of various types of mobilizing wells and lower recovery or production wells. Other production wells, gas scavenging vacuum wells, and gas disposal injection wells may be drilled from the surface. The thermal recovery process uses the combination of heating element wells installed into the reservoir from underground; product production wells installed from underground or from the surface; steam injection wells (or steam injection wells with entrained diluents and catalysts) installed from underground or from the surface; gas and water injection disposal wells installed from underground or from the surface; and vacuum gas scavenging wells installed from the surface. Thus, by effective use of surface and underground facilities, the bitumen reservoir is operated as a recovery and partial upgrading facility, thereby substantially reducing energy expenditures and eliminating unnecessary emissions, especially carbon dioxide.
All wells are instrumented with temperature and pressure sensors and automated to duplicate a thermal soaker or coking process.
In a next stage, power and steam is generated by gas turbine co-generation (operations up to about 50,000 bpd) or nuclear plant (operations from about 50,000 bpd to several hundred bpd).
As an example, in a start-up stage, mobilizing wells are brought up to a range of from about 200 to about 250° C. through steam injection and electrical heater wells, then a reservoir temperature profile is applied for mobilizing and recovery of bitumen. Vacuum wells pull −0.5 psig or other optimized value on the top of the reservoir to facilitate the in-situ movement of gases to the top of the reservoir. When the defined portion of the reservoir is up to the selected temperature, a desired amount of bitumen is produced.
In a next stage, the desired amount of bitumen is removed from the defined portion of the underground deposit and the temperature in the lower wells is increased up to a range of about 550 to about 1,000° C., with a temperature of about 800° C. being preferred. The temperature depends on the selected reservoir coking mechanism. A temperature profile over a selected dimension of the production zone is generated to allow for gravity segregation, with ashphaltenes segregating in the (cooler) lower portions of the zone and NGLs in the hotter (upper) portions of the zone or vice versa.
Wells are placed in a fashion that allows production of high API fluid and natural separation based on gravity and temperature. High API products from thermal conversion of bitumen and heavy oil include Heavy Vacuum Gas Oil (“HVGO”), jet, diesel and naphtha.
To assist in cracking of the bitumen and heavy oil, a Fluidized Cracking Catalyst (“FCC”) may be injected into the production zone. For example, very small particles of aluminum oxide and silica can be added to steam injected into the formation. These particles will be entrained by the steam and distributed into the formation where they will help catalyze cracking activities in the various temperature zones.
Controlled amounts of steam and or air may be injected into the various levels as a way to add heat.
Produced gases and flue gases, especially CO2, may be injected into the various levels of the reservoir to aid in and act as solvents.
CO2 can be captured and re-injected into the production zone to act as both a solvent in the upgraded portions of the production zone and as a micro-bubble generator for the non-upgraded portions of the production zone.
At later recovery stages, air is injected for partial in-situ combustion.
On the surface, a natural gas refrigeration plant recovers C3+ liquids from the produced gas, and C2—fluids are blown into the Vapor Recovery Unit (“VRU”) and combined with H2S/CO2 for re-injection.
An amine plant sweetens the fuel gas from the Turbine Heat Recovery Steam Generator (“HRSG”). Sour gas (fuel gas from processes such as catalytic cracking and hydrotreating, which contains hydrogen sulphide and carbon dioxide) is treated before it can be used as refinery fuel. Amine plants in petroleum refining remove acid contaminants from sour gas and hydrocarbon streams. In amine plants, gas and liquid hydrocarbon streams containing carbon dioxide and/or hydrogen sulfide are charged to a gas absorption tower or liquid contactor where the acid contaminants are absorbed by counterflowing amine solutions. The stripped gas or liquid is removed overhead, and the amine is sent to a regenerator. In the regenerator, the acidic components are stripped by heat and reboiling action and disposed of, and the amine is recycled.
The Falling Tube Evaporator (FTE) treats water and condensate from the produced fluids and make-up water for steam generation for power and some injection.
Standard techniques are used to treat oil.
Brine water concentrate is disposed into the appropriate geologic layer.
A number of variations and modifications of the invention can be used. As will be appreciated, it would be possible to provide for some features of the invention without providing others. For example, the use of horizontal heating elements could be combined with other extraction technologies advanced from the tunnel or shaft. For example, the heating elements could be used as a formation pre-heater, then the formation could be steamed, solvent injected or other method advanced from the underground workings or the ground surface.
Another method that is covered by the present invention utilizes a cold recovery process such as diluent or solvent injection to mobilize the bitumen or heavy oil for the first phase of the recovery operation. This approach minimizes the amount of energy used and CO2 generated during initial recovery operations (typically, the initial phase of recovery is about 50% to about 60% of total recovery). Thereupon, heating wells are activated to heat the reservoir, continue the mobilization and recovery operations and gradually phase in increased heating to initiate the partial upgrading phase of the operation. This approach may result in minimizing energy requirements and CO2 generation for the overall operation. New diluent and solvent stocks are one of the potential products resulting from in-situ partial upgrading and/or surface refining operations and so may provide a make-up supply of diluents lost in the overall operation.
The methods described herein can be applied to oil sands formations such as the Athabasca oil sands in Alberta, Canada. These methods can also be applied to bitumen or heavy oil deposits in carbonate reservoirs such as the Grosmont Carbonates, also in Alberta, Canada. These methods can also be applied to oil shales such as occur extensively in Colorado and Utah in the United States.
The present invention, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the present invention after understanding the present disclosure. The present invention, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, for example for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the invention are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the invention.
Moreover though the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
The present application claims the benefits, under 35 U.S.C.§119(e), of U.S. Provisional Application Ser. No. 61/026,594 filed Feb. 6, 2008, entitled “Method of Controlling a Thermal Recovery and Upgrading Operation in a Reservoir” to Gil and Ser. No. 61/030,817 filed Feb. 22, 2008, entitled “Method of Controlling a Thermal Recovery and Upgrading Operation in a Reservoir” to Gil, both of which are incorporated herein by these references.
Number | Name | Date | Kind |
---|---|---|---|
604330 | Kibling | May 1898 | A |
1520737 | Wright | Dec 1924 | A |
1634236 | Ranney | Jun 1927 | A |
1660187 | Ehrat | Feb 1928 | A |
1660818 | Leo | Feb 1928 | A |
1722679 | Ranney | Jul 1929 | A |
1936643 | Reed | Oct 1929 | A |
1735012 | Rich | Nov 1929 | A |
1735481 | Uren | Nov 1929 | A |
1811560 | Ranney | Jun 1931 | A |
1816260 | Lee | Jul 1931 | A |
1852717 | Grinnell et al. | Apr 1932 | A |
1884859 | Ranney | Oct 1932 | A |
1910762 | Grinnell et al. | May 1933 | A |
2148327 | Smith et al. | Feb 1939 | A |
2193219 | Bowie et al. | Mar 1940 | A |
2200665 | Bolton | May 1940 | A |
2210582 | Grosse et al. | Aug 1940 | A |
2365591 | Ranney | Dec 1944 | A |
2670801 | Sherborne | Mar 1954 | A |
2783986 | Nelson et al. | Mar 1957 | A |
2786660 | Alleman | Mar 1957 | A |
2799641 | Bell | Jul 1957 | A |
2823752 | Hellmuth | Feb 1958 | A |
2857002 | Pevere et al. | Oct 1958 | A |
2888987 | Parker | Jun 1959 | A |
2914124 | Ripley, Jr. | Nov 1959 | A |
2989294 | Coker | Jun 1961 | A |
3017168 | Carr | Jan 1962 | A |
3024013 | Rogers et al. | Mar 1962 | A |
3034773 | Legatski | May 1962 | A |
3207221 | Cochran et al. | Sep 1965 | A |
3227229 | Wakefield, Jr. | Jan 1966 | A |
3259186 | Dietz | Jul 1966 | A |
3285335 | Reistle, Jr. | Nov 1966 | A |
3333637 | Prats | Aug 1967 | A |
3338306 | Cook | Aug 1967 | A |
3353602 | Geertsma | Nov 1967 | A |
3362751 | Tinlin | Jan 1968 | A |
3386508 | Bielstein et al. | Jun 1968 | A |
3455392 | Prats | Jul 1969 | A |
3456730 | Lange | Jul 1969 | A |
3474863 | Deans et al. | Oct 1969 | A |
3530939 | Turner et al. | Sep 1970 | A |
3613806 | Malott | Oct 1971 | A |
3620313 | Elmore et al. | Nov 1971 | A |
3678694 | Haspert | Jul 1972 | A |
3759575 | Boyd et al. | Sep 1973 | A |
3768559 | Allen et al. | Oct 1973 | A |
3778107 | Haspert | Dec 1973 | A |
3784257 | Lauber et al. | Jan 1974 | A |
3833059 | Sisson | Sep 1974 | A |
3838738 | Redford et al. | Oct 1974 | A |
3882941 | Pelofsky | May 1975 | A |
3884261 | Clynch | May 1975 | A |
3888543 | Johns | Jun 1975 | A |
3922148 | Child | Nov 1975 | A |
3922287 | Pawson et al. | Nov 1975 | A |
3924895 | Leasure | Dec 1975 | A |
3937025 | Alverez-Calderon | Feb 1976 | A |
3941423 | Garte | Mar 1976 | A |
3948323 | Sperry et al. | Apr 1976 | A |
3954140 | Hendrick | May 1976 | A |
3960408 | Johns | Jun 1976 | A |
3986557 | Striegler et al. | Oct 1976 | A |
3992287 | Rhys | Nov 1976 | A |
4046191 | Neath | Sep 1977 | A |
4055959 | Fritz | Nov 1977 | A |
4064942 | Prats | Dec 1977 | A |
4067616 | Smith et al. | Jan 1978 | A |
4072018 | Alvarez-Calderon | Feb 1978 | A |
4076311 | Johns | Feb 1978 | A |
4085803 | Butler | Apr 1978 | A |
4099388 | Husemann et al. | Jul 1978 | A |
4099570 | Vandergrift | Jul 1978 | A |
4099783 | Verty et al. | Jul 1978 | A |
4106562 | Barnes et al. | Aug 1978 | A |
4116487 | Yamazaki et al. | Sep 1978 | A |
4144935 | Bridges et al. | Mar 1979 | A |
4149597 | Redford et al. | Apr 1979 | A |
4152027 | Fujimoto et al. | May 1979 | A |
4160481 | Turk et al. | Jul 1979 | A |
4165903 | Cobbs | Aug 1979 | A |
4167290 | Yamazaki et al. | Sep 1979 | A |
4203626 | Hamburger | May 1980 | A |
4209268 | Fujiwara et al. | Jun 1980 | A |
4216999 | Hanson | Aug 1980 | A |
4224988 | Gibson et al. | Sep 1980 | A |
4227743 | Ruzin et al. | Oct 1980 | A |
4236640 | Knight | Dec 1980 | A |
4249777 | Morrell et al. | Feb 1981 | A |
4257650 | Allen | Mar 1981 | A |
4265307 | Elkins | May 1981 | A |
4279743 | Miller | Jul 1981 | A |
4285548 | Erickson | Aug 1981 | A |
4289354 | Zakiewicz | Sep 1981 | A |
4296969 | Willman | Oct 1981 | A |
4406499 | Yildirim | Sep 1983 | A |
4410216 | Allen | Oct 1983 | A |
4434849 | Allen | Mar 1984 | A |
4440449 | Sweeney | Apr 1984 | A |
4445723 | McQuade | May 1984 | A |
4455216 | Angevine et al. | Jun 1984 | A |
4456305 | Yoshikawa | Jun 1984 | A |
4458945 | Ayler et al. | Jul 1984 | A |
4458947 | Hopley et al. | Jul 1984 | A |
4463988 | Bouck et al. | Aug 1984 | A |
4486050 | Snyder | Dec 1984 | A |
4494799 | Snyder | Jan 1985 | A |
4502733 | Grubb | Mar 1985 | A |
4505516 | Shelton | Mar 1985 | A |
4533182 | Richards | Aug 1985 | A |
4536035 | Huffman et al. | Aug 1985 | A |
4545435 | Bridges et al. | Oct 1985 | A |
4566961 | Diaz et al. | Jan 1986 | A |
4575280 | Hemphill et al. | Mar 1986 | A |
4595239 | Ayler et al. | Jun 1986 | A |
4601607 | Lehmann | Jul 1986 | A |
4603909 | LeJeune | Aug 1986 | A |
4607888 | Trent et al. | Aug 1986 | A |
4607889 | Hagimoto et al. | Aug 1986 | A |
4611855 | Richards | Sep 1986 | A |
4682471 | Wagner | Jul 1987 | A |
4699709 | Peck | Oct 1987 | A |
4753666 | Pastor et al. | Jun 1988 | A |
4774470 | Takigawa et al. | Sep 1988 | A |
4793736 | Thompson et al. | Dec 1988 | A |
4808030 | Takegawa | Feb 1989 | A |
4856936 | Hentschel et al. | Aug 1989 | A |
4911578 | Babendererde | Mar 1990 | A |
4946579 | Ocelli | Aug 1990 | A |
4946597 | Sury | Aug 1990 | A |
4983077 | Sorge et al. | Jan 1991 | A |
5016710 | Renard et al. | May 1991 | A |
5032039 | Hagimoto et al. | Jul 1991 | A |
5051033 | Grotenhofer | Sep 1991 | A |
5125719 | Snyder | Jun 1992 | A |
5141363 | Stephens | Aug 1992 | A |
5174683 | Grandori | Dec 1992 | A |
5205613 | Brown, Jr. | Apr 1993 | A |
5211510 | Kimura et al. | May 1993 | A |
5217076 | Masek | Jun 1993 | A |
5280814 | Stroh | Jan 1994 | A |
5316664 | Gregoli et al. | May 1994 | A |
5330292 | Sakanishi et al. | Jul 1994 | A |
5339898 | Yu et al. | Aug 1994 | A |
5354359 | Wan et al. | Oct 1994 | A |
5446980 | Rocke | Sep 1995 | A |
5484232 | Hayashi et al. | Jan 1996 | A |
5516967 | Pandey et al. | May 1996 | A |
5534136 | Rosenbloom | Jul 1996 | A |
5534137 | Griggs et al. | Jul 1996 | A |
5626726 | Kong et al. | May 1997 | A |
5655605 | Matthews | Aug 1997 | A |
5656136 | Gayaut et al. | Aug 1997 | A |
5697676 | Kashima et al. | Dec 1997 | A |
5767680 | Torres-Verdin et al. | Jun 1998 | A |
5785736 | Thomas et al. | Jul 1998 | A |
5831934 | Gill et al. | Nov 1998 | A |
5852262 | Gill et al. | Dec 1998 | A |
5879057 | Schwoebel et al. | Mar 1999 | A |
5890771 | Cass | Apr 1999 | A |
6003953 | Huang et al. | Dec 1999 | A |
6017095 | DiMillo | Jan 2000 | A |
6027175 | Seear et al. | Feb 2000 | A |
6190536 | Lokhandwala et al. | Feb 2001 | B1 |
6206478 | Uehara et al. | Mar 2001 | B1 |
6257334 | Cyr et al. | Jul 2001 | B1 |
6263965 | Schmidt et al. | Jul 2001 | B1 |
6277286 | Søntvedt et al. | Aug 2001 | B1 |
6364418 | Schwoebel | Apr 2002 | B1 |
6399030 | Nolan | Jun 2002 | B1 |
6412555 | Sten-Halvorsen et al. | Jul 2002 | B1 |
6554368 | Drake et al. | Apr 2003 | B2 |
6569235 | Carter, Jr. | May 2003 | B2 |
6604580 | Zupanick et al. | Aug 2003 | B2 |
6631761 | Yuan et al. | Oct 2003 | B2 |
6679326 | Zakiewicz | Jan 2004 | B2 |
6758289 | Kelley et al. | Jul 2004 | B2 |
6767518 | Ichikawa et al. | Jul 2004 | B2 |
6796381 | Ayler et al. | Sep 2004 | B2 |
6857487 | Galloway et al. | Feb 2005 | B2 |
6869147 | Drake et al. | Mar 2005 | B2 |
6880633 | Wellington et al. | Apr 2005 | B2 |
6890497 | Rau et al. | May 2005 | B2 |
6929330 | Drake et al. | Aug 2005 | B2 |
6948562 | Wellington et al. | Sep 2005 | B2 |
6997256 | Williams et al. | Feb 2006 | B2 |
7066254 | Vinegar et al. | Jun 2006 | B2 |
7066973 | Bentley | Jun 2006 | B1 |
7097255 | Drake et al. | Aug 2006 | B2 |
7128375 | Watson | Oct 2006 | B2 |
7185707 | Graham | Mar 2007 | B1 |
7192092 | Watson | Mar 2007 | B2 |
7240730 | Williams et al. | Jul 2007 | B2 |
7264788 | Hampden-Smith et al. | Sep 2007 | B2 |
7381320 | Iqbal et al. | Jun 2008 | B2 |
7428926 | Heins | Sep 2008 | B2 |
7448692 | Drake et al. | Nov 2008 | B2 |
7461901 | Drake et al. | Dec 2008 | B2 |
20020143693 | Soestbergen et al. | Oct 2002 | A1 |
20030146002 | Vinegar et al. | Aug 2003 | A1 |
20030188863 | Gilbert et al. | Oct 2003 | A1 |
20040211559 | Nguyen et al. | Oct 2004 | A1 |
20040249732 | Drummond | Dec 2004 | A1 |
20050051362 | McGuire et al. | Mar 2005 | A1 |
20060231455 | Olsvik et al. | Oct 2006 | A1 |
20070039729 | Watson | Feb 2007 | A1 |
20070044957 | Watson | Mar 2007 | A1 |
20070181083 | Fulton et al. | Aug 2007 | A1 |
20070237696 | Payton | Oct 2007 | A1 |
20070277438 | Lynch et al. | Dec 2007 | A1 |
20080017416 | Watson et al. | Jan 2008 | A1 |
20080078552 | Donnelly et al. | Apr 2008 | A1 |
20080087422 | Kobler et al. | Apr 2008 | A1 |
20080122286 | Brock et al. | May 2008 | A1 |
20080308174 | Huglen | Dec 2008 | A1 |
20090084707 | Gil | Apr 2009 | A1 |
20090100754 | Gil | Apr 2009 | A1 |
20090139716 | Brock et al. | Jun 2009 | A1 |
20090292571 | Gil et al. | Nov 2009 | A1 |
20100058771 | Gil et al. | Mar 2010 | A1 |
20100224370 | Donnelly et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
986146 | Mar 1976 | CA |
986544 | Mar 1976 | CA |
1165712 | Apr 1984 | CA |
1167238 | May 1984 | CA |
1224911 | Aug 1987 | CA |
2124199 | Jun 1992 | CA |
2222668 | May 1998 | CA |
2340506 | Sep 2001 | CA |
2526854 | Sep 2001 | CA |
2583508 | Sep 2001 | CA |
2583513 | Sep 2001 | CA |
2583519 | Sep 2001 | CA |
2583523 | Sep 2001 | CA |
2358805 | Oct 2001 | CA |
2315596 | Feb 2002 | CA |
2332207 | Feb 2002 | CA |
0120625 | Oct 1986 | EP |
03-267497 | Nov 1991 | JP |
WO 0169042 | Sep 2001 | WO |
WO 2007133461 | Nov 2007 | WO |
WO 2008051822 | May 2008 | WO |
WO 2008131169 | Oct 2008 | WO |
WO 2008138118 | Nov 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090194280 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
61026594 | Feb 2008 | US | |
61030817 | Feb 2008 | US |